Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
题目大意:给一个m*n矩阵,每一行都是递增有序,逐行也是递增的,要求设计一个高效算法检查目标元素是否存在于此矩阵中。
解题思路:可以把整个矩阵展开,就是一个长数组,数组长度为M*N,用二分查找即可,就是需要把二分查找的位置转化为矩阵下标。假设有row行,col列,那么key对应的矩阵中的元素应该是matrix[key/col][key%col],这样就转为二分查找了。
Talk is cheap>>
public boolean searchMatrix(int[][] matrix, int target) { if (matrix == null || matrix[0][0] > target) return false; int rowLen = matrix.length; int colLen = matrix[0].length; int low = 0, high = rowLen * colLen - 1; while (low <= high) { int mid = (low + high) >>> 1; int x = mid / colLen; int y = mid % colLen; if (matrix[x][y] > target) { high = mid - 1; } else if (matrix[x][y] < target) { low = mid + 1; } else { return true; } } return false; }