• 计算几何 模板


    //凸包+最远点对
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    using namespace std;
    const double eps = 1e-8;
    
    int cmp(double x)
    {
        if(fabs(x)<eps)
            return 0;
        if(x>0)
            return 1;
        return -1;
    }
    
    inline double sqr(double x)
    {
        return x*x;
    }
    
    struct point
    {
        double x,y;
        point(){}
        point(int xx,int yy)
        {
            x=xx;
            y=yy;
        }
        friend point operator + (const point &a,const point &b)
        {
            return point(a.x+b.x,a.y+b.y);
        }
        friend point operator - (const point &a,const point &b)
        {
            return point(a.x-b.x,a.y-b.y);
        }
        friend bool operator == (const point &a,const point &b)
        {
            return cmp(a.x-b.x)==0 && cmp(a.y-b.y)==0;
        }
        void input()
        {
            scanf("%lf%lf",&x,&y);
        }
        double norm()
        {
            return sqrt(sqr(x)+sqr(y));
        }
    };
    struct polygon_convex
    {
        vector<point>P;
        polygon_convex(int Size=0)
        {
            P.resize(Size);
        }
    
    };
    
    bool comp_less(const point &a,const point &b)
    {
        return cmp(a.x-b.x)<0 || (cmp(a.x-b.x==0) && cmp(a.y-b.y)<0);
    }
    
    double det(point a,point b)
    {
        return a.x*b.y-a.y*b.x;
    }
    double dist(const point &a,const point &b)
    {
        return (a-b).norm();
    }
    long long dd(const point &a,const point &b)
    {
        return sqr(a.x-b.x)+sqr(a.y-b.y);
    }
    polygon_convex convex_hull(vector<point> a)
    {
        polygon_convex res(2*a.size()+5);
        sort(a.begin(),a.end(),comp_less);
        a.erase(unique(a.begin(),a.end()),a.end());
        int m=0;
        for(int i=0;i<a.size();++i)
        {
            while(m>1
                  &&
                  cmp(det( res.P[m-1]-res.P[m-2],a[i]-res.P[m-2] ))<=0)
                --m;
            res.P[m++]=a[i];
        }
        int k=m;
        for(int i=int(a.size())-2;i>=0;--i)
        {
            while(m>k && cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
            res.P[m++]=a[i];
        }
        res.P.resize(m);
        if(a.size()>1)
            res.P.resize(m-1);
        return res;
    }
    
    long long convex_diameter(polygon_convex &a,int &First,int &Second)
    {
        vector<point> &p = a.P;
        int n=p.size();
        long long maxd=0;
        if(n==1)
        {
            First=Second=0;
            return maxd;
        }
        #define next(i) ((i+1)%n)
        for(int i=0,j=1;i<n;i++)
        {
            while(cmp(det(p[next(i)]-p[i],p[j]-p[i])-det(p[next(i)]-p[i],p[next(j)]-p[i]))<0)
            {
                j=next(j);
            }
            long long d=dd(p[i],p[j]);
            if(d>maxd)
            {
                maxd=d;
                First=i,Second=j;
            }
            d=dd(p[next(i)],p[next(j)]);
            if(d>maxd)
            {
                maxd=d;
                First=i,Second=j;
            }
        }
        return maxd;
    }
    int n;
    vector<point> p;
    polygon_convex pc;
    point pp;
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            pp.input();
            p.push_back(pp);
        }
        int x,y;
        pc = convex_hull(p);
        long long dis = convex_diameter(pc,x,y);
        cout<<dis;
    }
    


    //圆与多边形面积交
    #include<iostream>
    #include<cmath>
    #include<cstdlib>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    const int Max = 1011;
    const double PI =acos(-1.0);
    const double pi =acos(-1.0);
    
    double ax,ay,bx,by,K;
    double cx,cy,tx,ty,R;
    int n;
    
    const double eps=1e-8;
    int cmp(double x)
    {
        if(fabs(x)<eps)
            return 0;
        if(x>0)
            return 1;
        return -1;
    }
    inline double sqr(double x)
    {
        return x*x;
    }
    
    struct point
    {
        double x,y;
        point(){};
        point(double a,double b):x(a),y(b){}
        friend point operator +(const point &a,const point &b)
        {
            return point(a.x+b.x,a.y+b.y);
        }
        friend point operator -(const point &a,const point &b)
        {
            return point(a.x-b.x,a.y-b.y);
        }
        friend bool operator ==(const point &a,const point &b)
        {
            return (cmp(a.x-b.x)==0)&&(cmp(a.y-b.y)==0);
        }
        friend point operator *(const point &a,const double &b)
        {
            return point(a.x*b,a.y*b);
        }
        friend point operator *(const double &a,const point &b)
        {
            return point(a*b.x,a*b.y);
        }
        friend point operator /(const point &a,const double &b)
        {
            return point(a.x/b,a.y/b);
        }
        double norm()
        {
            return sqrt(x*x+y*y);
        }
    };
    
    double det(const point &a,const point &b)
    {
        return a.x*b.y-a.y*b.x;
    }
    double dot(const point &a,const point &b)
    {
        return a.x*b.x+a.y*b.y;
    }
    double dist(const point &a,const point &b)
    {
        return (a-b).norm();
    }
    point rotate_point(const point &a,const double A)
    {
        double tx=a.x,ty=a.y;
        return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
    }
    
    int dcmp(double k){
        return k<-eps?-1:k>eps?1:0;
    }
    
    double cross(const point &a,const point &b){
        return a.x*b.y-a.y*b.x;
    }
    double abs(const point &o){
        return sqrt(dot(o,o));
    }
    point crosspt(const point &a,const point &b,const point &p,const point &q){
        double a1=cross(b-a,p-a);
        double a2=cross(b-a,q-a);
        return (p*a2-q*a1)/(a2-a1);
    }
    point res[Max];
    double r;
    double mysqrt(double n){
        return sqrt(max(0.0,n));
    }
    void circle_cross_line(const point &a,const point &b,const point &o,double r,point ret[],int &num)
    {
        double x0=o.x,y0=o.y;
        double x1=a.x,y1=a.y;
        double x2=b.x,y2=b.y;
        double dx=x2-x1,dy=y2-y1;
        double A=dx*dx+dy*dy;
        double B=2*dx*(x1-x0)+2*dy*(y1-y0);
        double C=(x1-x0)*(x1-x0)+(y1-y0)*(y1-y0)-r*r;
        double delta=B*B-4*A*C;
        num=0;
        if(dcmp(delta)>=0)
        {
            double t1=(-B-mysqrt(delta))/(2*A);
            double t2=(-B+mysqrt(delta))/(2*A);
            if(dcmp(t1-1)<=0&&dcmp(t1)>=0) ret[num++]=point(x1+t1*dx,y1+t1*dy);
            if(dcmp(t2-1)<=0&&dcmp(t2)>=0) ret[num++]=point(x1+t2*dx,y1+t2*dy);
        }
    }
    
    double sector_area(const point &a,const point &b){
        double theta=atan2(a.y,a.x)-atan2(b.y,b.x);
        while(theta<=0) theta+=2*PI;
        while(theta>2*PI) theta-=2*PI;
        theta=min(theta,2*PI-theta);
        return r*r*theta/2;
    }
    double calc(const point &a,const point &b){
        point p[2];
        int num =0;
        int ina=dcmp(abs(a)-r)<0;
        int inb=dcmp(abs(b)-r)<0;
        if(ina)
        {
            if(inb)
            {
                return fabs(cross(a,b))/2.0;
            }
            else
            {
                circle_cross_line(a,b,point(0,0),r,p,num);
                return sector_area(b,p[0])+fabs(cross(a,p[0]))/2.0;
            }
        }
        else
        {
            if(inb)
            {
                circle_cross_line(a,b,point(0,0),r,p,num);
                return sector_area(p[0],a)+fabs(cross(p[0],b))/2.0;
            }
            else
            {
                circle_cross_line(a,b,point(0,0),r,p,num);
                //cout<<"num="<<num<<endl;
                if(num==2)
                {
                    //cout<<"num=2"<<endl;
                    return sector_area(a,p[0])+sector_area(p[1],b)+fabs(cross(p[0],p[1]))/2.0;
                }
                else
                {
                    //cout<<" not in "<<a.x<<" "<<a.y<<" "<<b.x<<" "<<b.y<<endl;
                    return sector_area(a,b);
                }
            }
        }
    }
    double area(){
        double ret=0;
        for(int i=0;i<n;i++){
            int sgn=dcmp(cross(res[i],res[i+1]));
            if(sgn!=0){
                ret+=sgn*calc(res[i],res[i+1]);
                //cout<<"sgn="<<sgn<<" calc="<<calc(res[i],res[i+1])<<endl;
                //cout<<"point "<<res[i].x<<" "<<res[i].y<<" "<<res[i+1].x<<" "<<res[i+1].y<<endl;
                //cout<<"ret="<<ret<<endl;
            }
        }
        return ret;
    }
    
    
    
    int main()
    {
        int it=0;
        while(scanf("%d",&n)==1)
        {
            it++;
            //cout<<"PI="<<PI<<endl;
            scanf("%lf",&K);
            //K=1/K;
            for(int i=0;i<n;i++)
                scanf("%lf%lf",&res[i].x,&res[i].y);
            res[n].x=res[0].x;
            res[n].y=res[0].y;
            scanf("%lf%lf%lf%lf",&ax,&ay,&bx,&by);
            tx=ax+(bx-ax)/(1+K);
            ty=ay+(by-ay)/(1+K);
            cx=ax+(bx-ax)+(bx-ax)*K/(1-K);
            cy=ay+(by-ay)+(by-ay)*K/(1-K);
            cx=(cx+tx)/2;
            cy=(cy+ty)/2;
            R=sqrt((tx-cx)*(tx-cx)+(ty-cy)*(ty-cy));
            r=R;
            for(int i=0;i<=n;i++)
            {
                res[i].x-=cx;
                res[i].y-=cy;
                //cout<<"res["<<i<<"].x="<<res[i].x<<endl;
                //cout<<"res["<<i<<"].y="<<res[i].y<<endl;
            }
            printf("Case %d: %.8f
    ",it,fabs(area()));
        }
    }


  • 相关阅读:
    javascript语句——表达式语句、块语句、空语句和声明语句
    javascript运算符——条件、逗号、赋值、()和void运算符
    javascript运算符——位运算符
    javascript运算符语法概述
    javascript类型系统——undefined和null
    javascript类型系统——日期Date对象
    javascript中关于日期和时间的基础知识
    javascript中Date对象的应用——简易日历的实现
    javascript类型系统——Math对象
    photoshop学习目录
  • 原文地址:https://www.cnblogs.com/abgnwl/p/6550340.html
Copyright © 2020-2023  润新知