While Duff was resting in the beach, she accidentally found a strange array b0, b1, ..., bl - 1 consisting of l positive integers. This array was strange because it was extremely long, but there was another (maybe shorter) array, a0, ..., an - 1 that b can be build from a with formula: bi = ai mod n where a mod b denoted the remainder of dividing a by b.
Duff is so curious, she wants to know the number of subsequences of b like bi1, bi2, ..., bix (0 ≤ i1 < i2 < ... < ix < l), such that:
- 1 ≤ x ≤ k
- For each 1 ≤ j ≤ x - 1,
- For each 1 ≤ j ≤ x - 1, bij ≤ bij + 1. i.e this subsequence is non-decreasing.
Since this number can be very large, she want to know it modulo 109 + 7.
Duff is not a programmer, and Malek is unavailable at the moment. So she asked for your help. Please tell her this number.
The first line of input contains three integers, n, l and k (1 ≤ n, k, n × k ≤ 106 and 1 ≤ l ≤ 1018).
The second line contains n space separated integers, a0, a1, ..., an - 1 (1 ≤ ai ≤ 109 for each 0 ≤ i ≤ n - 1).
Print the answer modulo 1 000 000 007 in one line.
3 5 3 5 9 1
10
5 10 3 1 2 3 4 5
25
In the first sample case, . So all such sequences are: , , , , , , , , and .
有点类似前几场一个题 一个区间复制好多次求最长不下降序列长度 然而还是没过那个题
这个要求就是必须在连续段里选择
先给a排一下序
所以sum[i][j]表示总长度为i,最后一位是第j个数时的方案
一开始以为
sum[i][j]=sigma[i-1][j]
sigma[i][j]=sigma[i][j-1]+sum[i][j]
其实这样是错误的
因为可能出现重复数字的情况
比如
2 5 3
1 1
sum[1][1]=sum[1][2]=1;
sum[2][1]=2;不是1
所以应该找到数组中小于等于自己的最大的那个pos
=sigma[i-1][pos]就对了
然后分两种情况
如果有不能正好分完的情况
1.需要的组数全在正好分完的组里挑
2.需要的组数中最后一组在不完整的最后那组里选,其他的在完整的组里选
还要注意一点 long long a = 两个int相乘时 需要在第一个int前面先强制转换成long long 再乘
参见代码
#include<bits/stdc++.h> using namespace std; const int mod = 1e9+7; const int lim=1e6+10; long long m,n; long long l; int f[lim]; int g[lim]; long long shengxia; int need[lim]; vector<long long>sum[lim],sigma[lim]; long long duan; int main() { //freopen("1.in","r",stdin); //freopen("1.out","w",stdout); cin>>m>>l>>n; for(int i=1;i<=m;i++) { //cin>>f[i]; scanf("%d",&f[i]); } shengxia = l%m; for(int i=1;i<=shengxia;i++) g[i]=f[i]; sort(f+1,f+m+1); sort(g+1,g+shengxia+1); for(int i=1;i<=m;i++) { need[i-1]=upper_bound(f+1,f+m+1,f[i])-f-2; } long long pre = l/m; long long duan=min((long long)n,(long long)pre+(l%m==0?0:1)); //cout<<duan<<" "<<shengxia<<" "<<pre<<endl; for(int i=0;i<duan;i++) { int len = i+1; for(int j=0;j<m;j++) { if(len==1) sum[len].push_back(1); else sum[len].push_back(sigma[len-1][need[j]]%mod); //cout<<"sum["<<len<<"]["<<sum[len].size()-1<<"]="<<sum[len][sum[len].size()-1]<<endl; if(j==0) sigma[len].push_back(sum[len][j]%mod); else sigma[len].push_back((sigma[len][j-1]+sum[len][j])%mod); } } long long ans=0; for(int i=1;i<=duan&&i<=pre;i++) for(int j=0;j<m;j++) { //cout<<" A="<<pre-i+1<<" i="<<i<<" num="<<sum[i][j]<<endl; int value=f[i]; ans=((long long)ans+(long long)(((pre-i+1)%mod)*sum[i][j]%mod))%mod; //cout<<ans<<endl; } if(shengxia!=0) { ans=(ans+shengxia)%mod; //cout<<"ans="<<ans<<endl; for(int i=1;i<=duan-1 && i<=pre;i++) { for(int j=1;j<=shengxia;j++) { int value=g[j]; int pos=upper_bound(f+1,f+m+1,value)-f-2; //cout<<"pos="<<pos<<endl; //cout<<g[j]<<" "<<f[pos+1]<<endl; //cout<<"simga["<<i<<"]["<<pos<<"]="<<sigma[i][pos]<<endl; //cout<<"value="<<value<<" pos="<<pos<<" sigma="<<sigma[i][pos-1]<<endl; ans=((long long)ans+(long long)(sigma[i][pos]))%mod; //cout<<"i="<<i<<" ans="<<ans<<endl; } } } cout<<ans%mod<<endl; }