• Python开发简单爬虫


    简单爬虫框架:
      爬虫调度器 -> URL管理器 -> 网页下载器(urllib2) -> 网页解析器(BeautifulSoup) -> 价值数据

    Demo1:

    # coding:utf8
    import urllib2,cookielib
    
    url = "https://www.baidu.com"
    
    print '第一种方法'
    response1 = urllib2.urlopen(url)
    print response1.getcode() #返回状态码
    print len(response1.read()) #返回的网页内容的长度
    
    print "第二种方法"
    request = urllib2.Request(url)
    request.add_header("user-agent","Mozilla/5.0")
    response2 = urllib2.urlopen(request)
    print response2.getcode()
    print len(response2.read())
    
    print '第三种方法'
    cj = cookielib.CookieJar()
    opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
    urllib2.install_opener(opener)
    response3 = urllib2.urlopen(url)
    print response3.getcode() #返回状态码
    print cj    #返回cookie
    print response3.read()  #返回网页内容

    Python有哪几种网页解析器:
    正则表达式、html.parser、Beautiful Soup、lxml

    BeautifulSoup:
      - Python第三方库,用于从HTML或XML中提取数据
      - 官网:http://www.crummy.com/software/BeautifulSoup/bs4/doc/


    安装并测试beautifulsoup4:
      - 安装:pip install beautifulsoup4
      - 测试:import bs4

    如果PyCharm无法识别beautifulsoup4,则在设置里找到Python Intercepter这一项,改为python2.7版本即可。

    Demo2:

    # coding:utf-8
    import re
    from bs4 import BeautifulSoup
    
    # 示例代码片段(来自beautifulsoup官网)
    html_doc = """
    <html><head><title>The Dormouse's story</title></head>
    <body>
    <p class="title"><b>The Dormouse's story</b></p>
    
    <p class="story">Once upon a time there were three little sisters; and their names were
    <a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
    <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
    <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
    and they lived at the bottom of a well.</p>
    
    <p class="story">...</p>
    """
    
    soup = BeautifulSoup(html_doc,'html.parser',from_encoding='utf-8')
    
    print '获取所有的链接'
    links = soup.find_all('a')
    for link in links:
        print link.name,link['href'],link.get_text()
    
    print '获取lacie的链接'
    link_node = soup.find('a',href='http://example.com/lacie')
    print link_node.name,link_node['href'],link_node.get_text()
    
    print '正则匹配'
    link_node = soup.find('a', href= re.compile(r"ill"))
    print link_node.name,link_node['href'],link_node.get_text()
    
    print '获取p段落文字'
    p_node = soup.find('p', class_="title")
    print p_node.name,p_node.get_text()

    实战编写爬取百度百科页面:

    目录结构:

    注:mac osx下用alt+enter添加相应方法

    (爬虫调度器)spider_main.py:

    # coding=utf-8
    from baike_spider import url_manager,html_downloader,html_parser,html_outputer
    
    class SpiderMain(object):
        def __init__(self):
            self.urls = url_manager.UrlManager()    #url管理器
            self.downloader = html_downloader.HtmlDownloader()  #下载器
            self.parser = html_parser.HtmlParser()  #解析器
            self.outputer = html_outputer.HtmlOutputer()    #输出器
    
        def craw(self, root_url):
            count = 1 #判断当前爬取的是第几个url
            self.urls.add_new_url(root_url)
            while self.urls.has_new_url():      #循环,爬取所有相关页面,判断异常情况
                try:
                    new_url = self.urls.get_new_url()   #取得url
                    print 'craw %d : %s' % (count, new_url) #打印当前是第几个url
                    html_cont = self.downloader.download(new_url)   #下载页面数据
                    new_urls, new_data = self.parser.parse(new_url,html_cont)    #进行页面解析得到新的url以及数据
    
                    self.urls.add_new_urls(new_urls) #添加新的url
                    self.outputer.collect_data(new_data) #收集数据
    
                    if count == 10:  # 此处10可以改为100甚至更多,代表循环次数
                        break
    
                    count = count + 1
                except:
                    print 'craw failed'
    
            self.outputer.output_html()   #利用outputer输出收集好的数据
    
    if __name__=="__main__":
        root_url = "http://baike.baidu.com/view/21087.htm"
        obj_spider = SpiderMain()   # 创建
        obj_spider.craw(root_url)   # craw方法启动爬虫

    (url管理器)url_manager.py:

    # coding=utf-8
    class UrlManager(object):
    
        def __init__(self):
             self.new_urls = set()  # 待爬取url
             self.old_urls = set()  # 已爬取url
    
        def add_new_url(self, url):    # 向管理器中添加一个新的url
            if url is None:
                return
            if url not in self.new_urls and url not in self.old_urls:
                self.new_urls.add(url)
    
        def add_new_urls(self, urls): # 向管理器中添加新的更多的url
            if urls is None or len(urls) == 0:
                return
            for url in urls:
                self.add_new_url(url)
    
        def has_new_url(self):  # 判断管理器是否有新的待爬取的url
            return len(self.new_urls) != 0
    
        def get_new_url(self):  # 从管理器中获取一个新的待爬取的url
            new_url = self.new_urls.pop()
            self.old_urls.add(new_url)
            return new_url

    (下载器)html_downloader.py:

    import urllib2
    
    class HtmlDownloader(object):
    
        def download(self, url):
            if url is None:
                return None
    
            response = urllib2.urlopen(url)
    
            if response.getcode() != 200:
                return None
    
            return response.read()

    (解析器)html_parser.py:

    import re
    import urlparse
    from bs4 import BeautifulSoup
    
    class HtmlParser(object):
    
        def parse(self,page_url,html_cont):
            if page_url is None or html_cont is None:
                return
    
            soup = BeautifulSoup(html_cont,'html.parser', from_encoding='utf-8')
            new_urls = self._get_new_urls(page_url, soup)
            new_data = self._get_new_data(page_url, soup)
            return new_urls, new_data
    
        def _get_new_urls(self, page_url, soup):
            new_urls = set()
            # /view/123.htm
            links = soup.find_all('a', href=re.compile(r"/view/d+.htm"))
            for link in links:
                new_url = link['href']
                new_full_url = urlparse.urljoin(page_url, new_url)
                new_urls.add(new_full_url)
            return new_urls
    
        def _get_new_data(self, page_url, soup):
            res_data = {}
            # url
            res_data['url'] = page_url
    
            # <dd class="lemmaWgt-lemmaTitle-title"> <h1>Python</h1>
            title_node = soup.find('dd',class_="lemmaWgt-lemmaTitle-title").find("h1")
            res_data['title'] = title_node.get_text()
    
            # <div class="lemma-summary" label-module="lemmaSummary">
            summary_node = soup.find('div',class_="lemma-summary")
            res_data['summary'] = summary_node.get_text()
    
            return res_data

    (数据输出)html_outputer.py:

    # coding=utf-8
    class HtmlOutputer(object):
        #初始化
        def __init__(self):
            self.datas = []
    
        def collect_data(self, data):   #收集数据
            if data is None:
                return
            self.datas.append(data)
    
        def output_html(self):  #输出数据
            fout = open('output.html', 'w')
    
            fout.write("<html>")
    
            fout.write("<head>")
            fout.write("<meta charset= 'UTF-8'>")
            fout.write("</head>")
    
            fout.write("<body>")
            fout.write("<table>")
    
            # ASCII
            for data in self.datas:
                fout.write("<tr>")
                fout.write("<td>%s</td>" % data['url'])
                fout.write("<td>%s</td>" % data['title'].encode('utf-8'))
                fout.write("<td>%s</td>" % data['summary'].encode('utf-8'))
                fout.write("</tr>")
    
            fout.write("</html>")
            fout.write("</body>")
            fout.write("</table>")
    
            fout.close()

    运行程序spider_main.py可进行爬取页面,最终文件输出为output.html,里面包含词条和词条解释,爬取完毕。

    output.html:

    这只是最简单的爬虫,如果想深入学习,还有登录、验证码、Ajax、服务器防爬虫、多线程、分布式等等。

    GitHub:https://github.com/AbelSu131/baike_spider

  • 相关阅读:
    每位设计师都应该拥有的50个CSS代码片段-1
    JS OO库的选择
    Dean Edwards -- Base.js(译)
    Jquery中find、filter等几种用法的差异
    深入Java虚拟机读书笔记第三章安全
    深入Java虚拟机读书笔记第二章平台无关性
    深入Java虚拟机读书笔记第一章Java体系结构介绍
    ThinkInJava4读书笔记之第七章隐藏实施过程
    Java反射机制(转载)
    linux常用svn命令(转载)
  • 原文地址:https://www.cnblogs.com/abelsu/p/5105542.html
Copyright © 2020-2023  润新知