CIFAR100
13 Layers
cafar100_train
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
conv_layers = [
# 5 units of conv + max polling
# unit 1
layers.Conv2D(64,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(64,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit2
layers.Conv2D(128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit3
layers.Conv2D(256,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(256,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit4
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit5
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
]
def preprocess(x, y):
# [0-1]
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y
(x, y), (x_test, y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.shuffle(1000).map(preprocess).batch(64)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.map(preprocess).batch(64)
def main():
# [b,32,32,3]-->[b,1,1,512]
conv_net = Sequential(conv_layers)
conv_net.build(input_shape=[None, 32, 32, 3])
# x = tf.random.normal([4, 32, 32, 3])
# out = conv_net(x)
# print(out.shape)
fc_net = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(100, activation=None),
])
conv_net.build(input_shape=[None, 32, 32, 3])
fc_net.build(input_shape=[None, 512])
optimizer = optimizers.Adam(lr=1e-4)
# [1,2]+[3,4] = [1,2,3,4]
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(3):
for step, (x, y) in enumerate(train_db):
with tf.GradientTape() as tape:
# [b,32,32,3]
out = conv_net(x)
# flatten ==> [b,512]
out = tf.reshape(out, [-1, 512])
# [b,512] --> [b,100]
logits = fc_net(out)
# [b] --> [b,100]
y_onehot = tf.one_hot(y, depth=100)
# compute loss
loss = tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss,variables)
optimizer.apply_gradients(zip(grads,variables))
if step % 100 ==0:
print(epoch,step,'loss:',float(loss))
total_num = 0
total_correct = 0
for x,y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct)
acc = total_correct / total_num
print(epoch, 'acc:', acc)
if __name__ == '__main__':
main()