• Kera高层API002


    Keras != tf.keras

    • Keras是一个框架

    • datasets

    • layers

    • losses

    • metrics

    • optimizers

    Outline1

    • Metrics

    • update_state

    • result().numpy()

    • reset_states

    Metrics

    Step1.Build a meter

    acc_meter = metrics.Accuarcy()
    loss_meter = metrics.Mean
    

    Step2.Update data

    loss_meter.update_state(loss)
    acc_meter.update_state(y,pred)
    

    Step3.Get Average data

    print(step, 'loss:', loss_meter.result().numpy())
    # ...
    print(step,'Evaluate Acc:', total_correct/total, acc_meter.result().numpy()
    

    Clear buffer

    if step % 100 == 0:
        print(step, 'loss:', loss_meter.result().numpy())
        loss_meter.reset_states()
        
    # ...
    
    if step % 500 == 0:
        total, total_correct = 0., 0
        acc_meter.reset_states()
    

    Outline2

    • Compile

    • Fit

    • Evaluate

    • Predict

    Compile + Fit

    Individual loss and optimize1

    with tf.GradientTape() as tape:
        x = tf.reshape(x, (-1, 28*28))
        out = network(x)
        y_onehot = tf.one_hot(y, depth=10)
        loss = tf.reduce_mean(tf.losses.categorical_crossentropy(y_onehot, out, from_logits=True))
        
    grads = tape.gradient(loss, network.trainable_variables)
    optimizer.apply_gradients(zip(grads, network.trainable_variables))
    

    Now1

    network.compile(optimizer=optimizers.Adam(lr=0.01),
                    loss=tf.losses.CategoricalCrossentropy(fromlogits=True),
                    metircs=['accuracy'])
    

    Individual epoch and step2

    for epoch in range(epochs):
        for step, (x, y) in enumerate(db):
            # ...
    

    Now2

    network.compile(optimizer=optimizers.Adam(lr=0.01),
                    loss=tf.losses.CategoricalCrossentropy(fromlogits=True),
                    metircs=['accuracy'])
    
    network.fit(db, epochs=10)
    

    Standard Progressbar

    29-Keras高层API-标准输出.jpg

    Individual evaluation3

    if step % 500 == 0:
        total, total_correct = 0., 0
        
        for step, (x, y) in enumerate(ds_val):
            x = tf.reshape(x, (-1, 28*28))
            out = network(x)
            pred = tf.argmax(out, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)
            correct = tf.equal(pred, y)
            total_correct += tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy()
            total += x.shape[0]
           
        print(step, 'Evaluate Acc:', total_correct/total)
    
    

    Now3

    network.compile(optimizer=optimizers.Adam(lr=0.01),
                    loss=tf.losses.CategoricalCrossentropy(fromlogits=True),
                    metircs=['accuracy'])
    
    # validation_freq=2表示2个epochs做一次验证
    network.fit(db, epochs=10, validation_data=ds_val, validation_freq=2)
    

    Evaluation

    29-Keras高层API-标准输出2.jpg

    Test

    network.compile(optimizer=optimizers.Adam(lr=0.01),
                    loss=tf.losses.CategoricalCrossentropy(fromlogits=True),
                    metircs=['accuracy'])
    
    # validation_freq=2表示2个epochs做一次验证
    network.fit(db, epochs=10, validation_data=ds_val, validation_freq=2)
    
    network.evaluate(ds_val)
    

    29-Keras高层API-标准输出3.jpg

    Predict

    sample = next(iter(ds_val))
    x = sample[0]
    y = sample[1]
    pred = network.predict(x)
    y = tf.argmax(y, axis=1)
    pred = tf.argmax(pre, axis=1)
    
    print(pred)
    print(y)
    
  • 相关阅读:
    T3java核心API基础类
    java字符编码
    Servlet 1
    T2java面向对象
    T1java语言基础
    Mac OS mysql数据库安装与初始化
    java多线程中注入Spring对象问题
    T4java核心API集合类
    The first day Teddy
    Spring第二节 注入依赖
  • 原文地址:https://www.cnblogs.com/abdm-989/p/14123349.html
Copyright © 2020-2023  润新知