• 【HDU 3662】3D Convex Hull


    http://acm.hdu.edu.cn/showproblem.php?pid=3662
    求给定空间中的点的三维凸包上有多少个面。
    用增量法,不断加入点,把新加的点能看到的面都删掉,不能看到的面与能看到的面的棱与新点相连构成一个新的三角形面。
    这样的面全都是三角形,注意最后统计答案时要把重合的面算成一个。
    时间复杂度(O(n^2))

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    const int N = 303;
    const double eps = 1e-6;
    
    struct Point {
    	double x, y, z;
    	Point(double _x = 0, double _y = 0, double _z = 0) : x(_x), y(_y), z(_z) {}
    	Point operator + (const Point &A) const {
    		return Point(x + A.x, y + A.y, z + A.z);
    	}
    	Point operator - (const Point &A) const {
    		return Point(x - A.x, y - A.y, z - A.z);
    	}
    	double operator * (const Point &A) const {
    		return x * A.x + y * A.y + z * A.z;
    	}
    	Point operator ^ (const Point &A) const {
    		return Point(y * A.z - z * A.y, z * A.x - x * A.z, x * A.y - y * A.x);
    	}
    	double sqrlen() {
    		return x * x + y * y + z * z;
    	}
    } P[N];
    
    struct Face {
    	int a, b, c; bool ex;
    	Face(int _a = 0, int _b = 0, int _c = 0, bool _ex = false) : a(_a), b(_b), c(_c), ex(_ex) {}
    } F[N * N];
    
    int n, ftot, LeftFace[N][N];
    
    void insFace(int a, int b, int c, int n1, int n2, int n3) {
    	F[++ftot] = (Face) {a, b, c, true};
    	LeftFace[a][b] = LeftFace[b][c] = LeftFace[c][a] = ftot;
    	LeftFace[b][a] = n1;
    	LeftFace[c][b] = n2;
    	LeftFace[a][c] = n3;
    }
    
    bool visible(int f, int p) {
    	Point a = P[F[f].b] - P[F[f].a], b = P[F[f].c] - P[F[f].a];
    	return (P[p] - P[F[f].a]) * (a ^ b) > eps;
    }
    
    int st, to[N], ps[N], pt[N], ptot = 0, pf[N];
    
    void dfs(int x, int s, int t, int p) {
    	if (F[x].ex == false) return;
    	
    	if (visible(x, p))
    		F[x].ex = false;
    	else {
    		to[st = s] = t;
    		return;
    	}
    	
    	dfs(LeftFace[F[x].b][F[x].a], F[x].a, F[x].b, p);
    	dfs(LeftFace[F[x].c][F[x].b], F[x].b, F[x].c, p);
    	dfs(LeftFace[F[x].a][F[x].c], F[x].c, F[x].a, p);
    }
    
    Point ff;
    void dfs2(int x) {
    	if (F[x].ex == false) return;
    	
    	Point now = (P[F[x].b] - P[F[x].a]) ^ (P[F[x].c] - P[F[x].a]);
    	if (fabs(now * ff - sqrt(now.sqrlen() * ff.sqrlen())) < 1e-6)
    		F[x].ex = false;
    	else
    		return;
    	
    	dfs2(LeftFace[F[x].b][F[x].a]);
    	dfs2(LeftFace[F[x].c][F[x].b]);
    	dfs2(LeftFace[F[x].a][F[x].c]);
    }
    
    int main() {
    	while (~scanf("%d", &n)) {
    		for (int i = 1; i <= n; ++i) scanf("%lf%lf%lf", &P[i].x, &P[i].y, &P[i].z);
    		ftot = 0;
    		Point a, b, c, d, e;
    		a = P[2] - P[1];
    		int tmp, id1, id2;
    		for (tmp = 3; tmp <= n; ++tmp) {
    			b = P[tmp] - P[1];
    			d = a ^ b;
    			if (d.sqrlen() < eps) continue;
    			id1 = tmp; break;
    		}
    		for (++tmp; tmp <= n; ++tmp) {
    			c = P[tmp] - P[1];
    			if (fabs(d * c) < eps) continue;
    			id2 = tmp; break;
    		}
    		
    		if (d * c < 0) swap(id1, id2);
    		insFace(1, 2, id2, 3, 4, 2);
    		insFace(1, id2, id1, 1, 4, 3);
    		insFace(1, id1, 2, 2, 4, 1);
    		insFace(2, id1, id2, 3, 2, 1);
    		
    		for (int i = 3; i <= n; ++i) {
    			if (i == id1 || i == id2) continue;
    			for (int j = 1; j <= ftot; ++j)
    				if (F[j].ex && visible(j, i)) {
    					dfs(j, 0, 0, i);
    					ptot = 0;
    					int tmps = st, tmpt = to[st], ppff = ftot;
    					do {
    						++ptot;
    						ps[ptot] = tmps; pt[ptot] = tmpt;
    						pf[ptot] = ++ppff;
    						tmps = tmpt; tmpt = to[tmpt];
    					} while (tmps != st);
    					
    					for (int k = 1, pre, suc; k <= ptot; ++k) {
    						pre = k - 1; suc = k + 1;
    						if (pre == 0) pre = ptot;
    						if (suc > ptot) suc = 1;
    						pre = pf[pre]; suc = pf[suc];
    						insFace(pt[k], i, ps[k], suc, pre, LeftFace[pt[k]][ps[k]]);
    					}
    					
    					break;
    				}
    		}
    		
    		int ans = 0;
    		for (int i = 1; i <= ftot; ++i)
    			if (F[i].ex) {
    				++ans;
    				ff = (P[F[i].b] - P[F[i].a]) ^ (P[F[i].c] - P[F[i].a]);
    				dfs2(i);
    			}
    		printf("%d
    ", ans);
    	}
    	
    	return 0;
    }
    
  • 相关阅读:
    怎样运用Oracle的BFILE
    第一个博客
    返回引用的函数
    c++之SQLite的增删改查
    sqlite命令行程序说明
    CreateProcess函数详解
    注册窗口类
    radio button的用法
    跨线程使用CSocket
    关于socket的connect超时的问题
  • 原文地址:https://www.cnblogs.com/abclzr/p/6802132.html
Copyright © 2020-2023  润新知