http://uoj.ac/problem/171
带花树开花时的u和v一定要记清楚顺序,想好了再写,数据范围也要算好!
对每个筐子拆成3个点,连成一个三元环,对每个(u,v),让u和v的3个点都连边,这样跑一般图最大匹配(先增广每个球),可以发现所有的球都能放到一个筐子里,而且半空的筐子代表的三元环一定有一条边有匹配。
匹配总数=n+半空的筐子数,最大化匹配总数也相当于最大化半空的筐子数。
还可以发现三元环没必要连三条边,任选两个点连一条边也是一样的。
时间复杂度(O(n^3))。
abclzr:“好神的建图啊,我一辈子也想不出来。”
reflash:“没关系,下辈子继续想。”
abclzr:“……”
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 603;
const int M = 100003;
struct node {int nxt, to;} E[M << 1];
int cnt, point[N], n, m, e, s[N], qu[N];
void ins(int u, int v) {E[++cnt] = (node) {point[u], v}; point[u] = cnt;}
int tt[N], id[N], tot, fa[N], pre[N], Next[N];
int find(int x) {return fa[x] == x ? x : (fa[x] = find(fa[x]));}
int p, q, tim = 0, vis[N];
int findlca(int u, int v) {
++tim;
while (true) {
if (u) {
if (vis[u] == tim)
return u;
vis[u] = tim;
u = find(pre[Next[u]]);
}
swap(u, v);
}
}
void blossom(int u, int v, int lca) {
while (find(u) != lca) {
pre[u] = v;
v = Next[u];
if (s[v] == 1) {s[v] = 0; if (++q == N) q = 0; qu[q] = v;}
if (fa[u] == u) fa[u] = lca;
if (fa[v] == v) fa[v] = lca;
u = pre[v];
}
}
int match(int x) {
memset(s, -1, sizeof(int) * (tot + 1));
for (int i = 1; i <= tot; ++i) fa[i] = i;
p = 0; q = 1; s[qu[1] = x] = 0; pre[x] = 0;
int u, v;
while (p != q) {
if (++p == N) p = 0; u = qu[p];
for (int i = point[u]; i; i = E[i].nxt) {
v = E[i].to;
if (s[v] == -1) {
s[v] = 1; pre[v] = u;
if (!Next[v]) {
int last;
while (u) {
last = Next[u];
Next[u] = v; Next[v] = u;
u = pre[v = last];
}
return 1;
}
s[Next[v]] = 0; if (++q == N) q = 0; qu[q] = Next[v];
} else if (s[v] == 0 && find(u) != find(v)) {
int lca = findlca(fa[u], fa[v]);
blossom(u, v, lca);
blossom(v, u, lca);
}
}
}
return 0;
}
int main() {
int T; scanf("%d", &T);
while (T--) {
scanf("%d%d%d", &n, &m, &e);
tt[0] = n - 2;
for (int i = 1; i <= m; ++i) {
tt[i] = tt[i - 1] + 3;
id[tt[i]] = id[tt[i] + 1] = id[tt[i] + 2] = i;
}
int u, v; tot = tt[m] + 2;
cnt = 0;
memset(point, 0, sizeof(int) * (tot + 1));
memset(Next, 0, sizeof(int) * (tot + 1));
for (int i = 1; i <= e; ++i) {
scanf("%d%d", &u, &v);
ins(u, tt[v]); ins(tt[v], u);
ins(u, tt[v] + 1); ins(tt[v] + 1, u);
ins(u, tt[v] + 2); ins(tt[v] + 2, u);
}
for (int i = 1; i <= m; ++i) ins(tt[i], tt[i] + 1), ins(tt[i] + 1, tt[i]);
int ans = 0;
for (int i = 1; i <= tot; ++i)
if (!Next[i])
ans += match(i);
printf("%d
", ans - n);
for (int i = 1; i <= n; ++i)
printf("%d ", id[Next[i]]);
puts("");
}
return 0;
}