• 【BZOJ 1016】【JSOI 2008】最小生成树计数


    http://www.lydsy.com/JudgeOnline/problem.php?id=1016
    统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明)。
    在同一个边权上对所有边权为这个的边暴力统计(可以用矩阵树定理),然后用并查集把这个边权的所有边贡献的连通性都加上,再统计下一个边权。
    最后把答案乘起来。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    const int N = 103;
    const int M = 1003;
    const int p = 31011;
    
    struct Edge {
    	int u, v, e;
    	bool operator < (const Edge &A) const {
    		return e < A.e;
    	}
    } E[M];
    int fa[N], n, m, sz[N], val[N], tot[N], l[N], r[N];
    
    int find(int x) {return fa[x] == x ? x : find(fa[x]);}
    
    void merge(int x, int y) {
    	fa[x] = y; sz[y] += sz[x];
    	while (fa[y] != y) {
    		y = fa[y];
    		sz[y] += sz[x];
    	}
    }
    
    void cut(int x, int y) {
    	if (fa[x] == y) {
    		fa[x] = x;
    		sz[y] -= sz[x];
    		while (fa[y] != y) {
    			y = fa[y];
    			sz[y] -= sz[x];
    		}
    	} else {
    		fa[y] = y;
    		sz[x] -= sz[y];
    		while (fa[x] != x) {
    			x = fa[x];
    			sz[x] -= sz[y];
    		}
    	}
    }
    
    int dfsl, dfsr, dfstot, sum;
    
    void dfs(int tmp, int nowtot) {
    	if (nowtot == dfstot) {++sum; if (sum == p) sum = 0; return;}
    	if (tmp > dfsr || dfstot - nowtot > dfsr - tmp + 1) return;
    	dfs(tmp + 1, nowtot);
    	int u = find(E[tmp].u), v = find(E[tmp].v);
    	if (u != v) {
    		if (sz[u] < sz[v]) merge(u, v); else merge(v, u);
    		dfs(tmp + 1, nowtot + 1);
    		cut(u, v);
    	}
    }
    
    int in() {
    	int k = 0; char c = getchar();
    	for (; c < '0' || c > '9'; c = getchar());
    	for (; c >= '0' && c <= '9'; c = getchar())
    		k = k * 10 + c - 48;
    	return k;
    }
    
    int main() {
    	n = in(); m = in();
    	int i;
    	for (i = 1; i <= m; ++i) {E[i].u = in(); E[i].v = in(); E[i].e = in();}
    	stable_sort(E + 1, E + m + 1);
    	
    	int x, y, num = 0, cnt = 0; val[0] = -1;
    	for (i = 1; i <= n; ++i) fa[i] = i, sz[i] = 1;
    	for (i = 1; i <= m; ++i) {
    		x = find(E[i].u); y = find(E[i].v);
    		if (E[i].e != val[num]) {
    			r[num] = i - 1;
    			val[++num] = E[i].e;
    			l[num] = i;
    		}
    		if (x != y) {
    			++tot[num];
    			if (sz[x] < sz[y]) merge(x, y); else merge(y, x);
    			++cnt;
    			if (cnt == n - 1)
    				break;
    		}
    	}
    	if (cnt < n - 1) {puts("0"); return 0;}
    	for (; i <= m && E[i].e == val[num]; ++i);
    	r[num] = i - 1;
    	
    	for (i = 1; i <= n; ++i) fa[i] = i, sz[i] = 1;
    	ll ans = 1;
    	for (i = 1; i <= num; ++i) {
    		sum = 0; dfsl = l[i]; dfsr = r[i]; dfstot = tot[i];
    		dfs(dfsl, 0);
    		for (int j = dfsl; j <= dfsr; ++j) {
    			x = find(E[j].u); y = find(E[j].v);
    			if (x != y) if (sz[x] < sz[y]) merge(x, y); else merge(y, x);
    		}
    		ans = ans * sum % p;
    	}
    	printf("%lld
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    bzoj 3040: 最短路(road)
    bzoj 2049: [Sdoi2008]Cave 洞穴勘测
    poj 2505 A multiplication game
    hdu 1729 Stone Game
    经典博弈模型
    hdu 1848 Fibonacci again and again(SG函数)
    hdu 2147 kiki's game(巴什博弈)
    hdu 1847 Good Luck in CET-4 Everybody!(巴什博弈)
    hdu 4388 Stone Game II
    poj 2234 Matches Game
  • 原文地址:https://www.cnblogs.com/abclzr/p/6201294.html
Copyright © 2020-2023  润新知