• 【POJ 3241】Object Clustering 曼哈顿距离最小生成树


    http://poj.org/problem?id=3241

    曼哈顿距离最小生成树模板题。

    核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫。扫完一个点就把它插到树状数组的y-x位置上,权值为x+y。查询时查询扫过的所有点满足ydone-xdone>=ynow-xnow时,直接是树状数组中的的一个后缀区间,从后往前扫保证了区间内的这些点都在当前点的y轴向右扫45度的范围内。树状数组实现查询x+y的最小值,以及此最小值对应原数组中的位置,方便建图连边。

    模板是抄的别人的QAQ

    时间复杂度$O(nlog n)$

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N = 100003;
    int in() {
    	int k = 0, fh = 1; char c = getchar();
    	for(; c < '0' || c > '9'; c = getchar())
    		if (c == '-') fh = -1;
    	for(; c >= '0' && c <= '9'; c = getchar())	
    		k = (k << 3) + (k << 1) + c - '0';
    	return k * fh;
    }
    
    struct Point {
    	int x, y, id;
    	bool operator < (const Point &A) const {
    		return x == A.x ? y < A.y : x < A.x;
    	}
    } P[N];
    struct Bits {
    	int mn, pos;
    	void init() {mn = 0x7fffffff; pos = -1;}
    } bit[N];
    int tot;
    struct Edge {
    	int u, v, dis;
    	bool operator < (const Edge &A) const {
    		return dis < A.dis;
    	}
    } E[N << 2];
    void add(int a, int b, int c) {E[++tot] = (Edge) {a, b, c};}
    
    int n, fa[N], k;
    int find(int x) {
    	if (fa[x] == x) return x;
    	fa[x] = find(fa[x]); return fa[x];
    }
    
    int dist(int x, int y) {
    	return abs(P[x].x - P[y].x) + abs(P[x].y - P[y].y);
    }
    
    void update(int x, int num, int pos) {
    	for(; x; x -= (x & (-x)))
    		if (num < bit[x].mn)
    			bit[x].mn = num, bit[x].pos = pos;
    }
    
    int m;
    int query(int x) {
    	int ans = 0x7fffffff, pos = -1;
    	for(x; x <= m; x += (x & (-x)))
    		if (bit[x].mn < ans)
    			ans = bit[x].mn, pos = bit[x].pos;
    	return pos;
    }
    
    int a[N], H[N], cnt;
    int solve() {
    	for(int change = 0; change < 4; ++change) {
    		if (change == 1 || change == 3)
    			for(int i = 1; i <= n; ++i) swap(P[i].x, P[i].y);
    		else if (change == 2)
    			for(int i = 1; i <= n; ++i) P[i].x = -P[i].x;
    		
    		sort(P + 1, P + n + 1);
    		for(int i = 1; i <= n; ++i)
    			a[i] = H[i] = P[i].y - P[i].x;
    		cnt = n;
    		sort(H + 1, H + cnt + 1);
    		cnt = unique(H + 1, H + cnt + 1) - H;
    		for(int i = 1; i <= cnt; ++i) bit[i].init();
    		int pos, tmp; m = cnt;
    		for(int i = n; i > 0; --i) {
    			pos = lower_bound(H + 1, H + cnt, a[i]) - H;
    			tmp = query(pos);
    			if (tmp != -1)
    				add(P[i].id, P[tmp].id, dist(i, tmp));
    			update(pos, P[i].x + P[i].y, i);
    		}
    	}
    	sort(E + 1, E + tot + 1);
    	cnt = n - k;
    	for(int i = 1; i <= n; ++i) fa[i] = i;
    	int u, v;
    	for(int i = 1; i <= tot; ++i) {
    		u = find(E[i].u); v = find(E[i].v);
    		if (u != v) {
    			--cnt;
    			fa[u] = v;
    			if (cnt == 0) return E[i].dis;
    		}
    	}
    }
    
    int main() {
    	while (~scanf("%d%d", &n, &k)) {
    		tot = 0;
    		for(int i = 1; i <= n; ++i) {
    			P[i].x = in(); P[i].y = in();
    			P[i].id = i;
    		}
    		printf("%d
    ", solve());
    	}
    	return 0;
    }
    

  • 相关阅读:
    SQL Server-数据库架构和对象、定义数据完整性
    SQL Server 2014 中,新建登录用户,分配权限,并指定该用户的数据
    SQL Server SQL性能优化之--数据库在“简单”参数化模式下,自动参数化SQL带来的问题
    SQL Server-简单查询语句,疑惑篇
    SQL Server-聚焦聚集索引对非聚集索引的影响
    SQL Server-聚焦使用索引和查询执行计划
    SQL Server-聚焦移除Bookmark Lookup、RID Lookup、Key Lookup提高SQL查询性能
    SQL SERVER中的sys.objects和sysobjects的区别
    详解sqlserver查询表索引
    双系统如何正确的使用修复BCD工具分享
  • 原文地址:https://www.cnblogs.com/abclzr/p/5796951.html
Copyright © 2020-2023  润新知