• 【BZOJ 3527】【ZJOI 2014】力


    代换一下变成多项式卷积,这里是的答案是两个卷积相减,FFT求一下两个卷积就可以啦

    详细的题解:http://www.cnblogs.com/iwtwiioi/p/4126284.html

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N = 500003;
    const double Pi = acos(- 1.0);
    struct cp {
    	double r, i;
    	cp (double _r = 0.0, double _i = 0.0) : r(_r), i(_i) {}
    	cp operator + (const cp &x) const {return cp(r + x.r, i + x.i);}
    	cp operator - (const cp &x) const {return cp(r - x.r, i - x.i);}
    	cp operator * (const cp &x) const {return cp(r * x.r - i * x.i, r * x.i + i * x.r);}
    };
    int rev[N];
    cp A[N];
    void DFT(cp *a, int n, int flag) {
    	for(int i = 0; i < n; ++i) A[rev[i]] = a[i];
    	for(int i = 0; i < n; ++i) a[i] = A[i];
    	for(int m = 2; m <= n; m <<= 1) {
    		cp wn(cos(2.0 * Pi / m * flag), sin(2.0 * Pi / m * flag));
    		int mid = m >> 1;
    		for(int i = 0; i < n; i += m) {
    			cp w(1.0);
    			for(int j = 0; j < mid; ++j) {
    				cp u = a[i + j], t = a[i + j + mid] * w;
    				a[i + j] = u + t;
    				a[i + j + mid] = u - t;
    				w = w * wn;
    			}
    		}
    	}
    	if (flag == -1)
    		for(int i = 0; i < n; ++i)
    			a[i].r /= n;
    }
    void init(int &n) {
    	int k = 1, L = 0;
    	for(; k < n; k <<= 1, ++L);
    	n = k;
    	for(int i = 0; i < n; ++i) {
    		int t = i, ret = 0;
    		for(int j = 0; j < L; ++j)
    			ret <<= 1, ret |= (t & 1), t >>= 1;
    		rev[i] = ret;
    	}
    }
    void FFT(double *x, double *y, cp *a, cp *b, int len) {
    	for(int i = 0; i < len; ++i) a[i].r = x[i], a[i].i = 0.0;
    	for(int i = 0; i < len; ++i) b[i].r = y[i], b[i].i = 0.0;
    	DFT(a, len, 1); DFT(b, len, 1);
    	for(int i = 0; i < len; ++i) a[i] = a[i] * b[i];
    	DFT(a, len, -1);
    }
    cp a[N], b[N];
    int n, len;
    double g[N], q[N], f[N], ans[N];
    int main() {
    	scanf("%d", &n); len = (n << 1) + 1;
    	init(len);
    	for(int i = 1; i <= n; ++i) scanf("%lf", &q[i]);
    	for(int i = 1; i <= n; ++i) g[i] = 1.0 / i / i;
    	for(int i = 0; i < n; ++i) f[i] = q[n - i];
    	
    	FFT(q, g, a, b, len);
    	for(int i = 1; i <= n; ++i) ans[i] = a[i].r;
    	FFT(f, g, a, b, len);
    	for(int i = 1; i <= n; ++i) ans[i] -= a[n - i].r;
    	for(int i = 1; i <= n; ++i) printf("%.3lf
    ", ans[i]);
    	
    	return 0;
    }

    题面如下,BZOJ上没有题面喔:


    Description

    给出n个数qi,给出Fj的定义如下: 
     
    令Ei=Fi/qi,求Ei

    Input

    第一行一个整数n。 
    接下来n行每行输入一个数,第i行表示qi。 

    Output

    n行,第i行输出Ei。 
    与标准答案误差不超过1e-2即可。 

    Sample Input

    5
    4006373.885184
    15375036.435759
    1717456.469144
    8514941.004912
    1410681.345880
    

    Sample Output

    -16838672.693
    3439.793
    7509018.566
    4595686.886
    10903040.872

    Hint

    对于30%的数据,n≤1000。 
    对于50%的数据,n≤60000。 
    对于100%的数据,n≤100000,0<qi<1000000000。 

    Source

    感谢nodgd放题

  • 相关阅读:
    Spring ApplicationListener 理解
    Tomcat 的context.xml说明、Context标签讲解
    IntrospectorCleanupListener作用
    Dubbo 和 Spring Cloud微服务架构 比较及相关差异
    ZooKeeper原理 --------这可能是把ZooKeeper概念讲的最清楚的一篇文章
    Dubbo 入门
    makefile的调试器remake
    linux下的nmap工具能干什么?
    makefile中的patsubst函数有何作用?
    openwrt为何需要refresh新增的补丁?
  • 原文地址:https://www.cnblogs.com/abclzr/p/5433928.html
Copyright © 2020-2023  润新知