• PID算法图形 python


    # -*- coding: utf-8 -*-
    
    
    class PID:
        def __init__(self, P=0.2, I=0.0, D=0.0):
            self.Kp = P
            self.Ki = I
            self.Kd = D
            self.sample_time = 0.00
            self.current_time = time.time()
            self.last_time = self.current_time
            self.clear()
    
        def clear(self):
            self.SetPoint = 0.0
            self.PTerm = 0.0
            self.ITerm = 0.0
            self.DTerm = 0.0
            self.last_error = 0.0
            self.int_error = 0.0
            self.windup_guard = 20.0
            self.output = 0.0
    
        def update(self, feedback_value):
            error = self.SetPoint - feedback_value
            self.current_time = time.time()
            delta_time = self.current_time - self.last_time
            delta_error = error - self.last_error
            if (delta_time >= self.sample_time):
                self.PTerm = self.Kp * error  # 比例
                self.ITerm += error * delta_time  # 积分
                if (self.ITerm < -self.windup_guard):
                    self.ITerm = -self.windup_guard
                elif (self.ITerm > self.windup_guard):
                    self.ITerm = self.windup_guard
                self.DTerm = 0.0
                if delta_time > 0:
                    self.DTerm = delta_error / delta_time
                self.last_time = self.current_time
                self.last_error = error
                self.output = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm)
    
        def setKp(self, proportional_gain):
            self.Kp = proportional_gain
    
        def setKi(self, integral_gain):
            self.Ki = integral_gain
    
        def setKd(self, derivative_gain):
            self.Kd = derivative_gain
    
        def setWindup(self, windup):
            self.windup_guard = windup
    
        def setSampleTime(self, sample_time):
            self.sample_time = sample_time
    
    
    import time
    import matplotlib
    
    matplotlib.use("TkAgg")
    import matplotlib.pyplot as plt
    import numpy as np
    from scipy.interpolate import make_interp_spline
    
    
    
    
    def test_pid(P=0.2, I=0.0, D=0.0, L=100):
        
        pid = PID(P, I, D)
    
        pid.SetPoint = 0.0
        pid.setSampleTime(0.01)
    
        END = L
        feedback = 0
    
        feedback_list = []
        time_list = []
        setpoint_list = []
    
        for i in range(1, END):
            pid.update(feedback)
            output = pid.output
            # print(output)
            if pid.SetPoint > 0:
                feedback += output  # (output - (1/i))控制系统的函数
            if 9 <= i <= 40:
                pid.SetPoint = 1
            elif i > 40:
                pid.SetPoint = 0.5
    
            time.sleep(0.01)
    
            feedback_list.append(feedback)
            setpoint_list.append(pid.SetPoint)
            time_list.append(i)
    
        time_sm = np.array(time_list)
        time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300)
        feedback_smooth = make_interp_spline(time_list, feedback_list)(time_smooth)
        plt.figure(0)
        plt.plot(time_smooth, feedback_smooth)
        plt.plot(time_list, setpoint_list)
    
        plt.xlabel('time (s)')
        plt.ylabel('PID (PV)')
        plt.title('TEST PID {}/{}/{}'.format(P, I, D))
    
        plt.xlim((0, L))
        plt.ylim((-0.5, 2))
    
        plt.grid(True)
        # plt.show()
        plt.savefig('./images/TEST PID {}-{}-{}.jpg'.format(P, I, D))
        plt.close()
    
    
    if __name__ == "__main__":
        test_pid(1.2, 1.0, 0.001, L=50)
        test_pid(1.2, 1.0, 0, L=50)
        test_pid(1.2, 0, 0, L=50)
    
        test_pid(0.8, 1.0, 0.001, L=50)
        test_pid(0.8, 1.0, 0, L=50)
        test_pid(0.8, 0, 0, L=50)
    
        test_pid(0.2, 0.0, 0.001, L=50)
        test_pid(0.2, 0.0, 0, L=50)
        test_pid(0.2, 0, 0, L=50)
    
        test_pid(0.8, 0, 0.001, L=50)
        test_pid(1.2, 0, 0.001, L=50)
    
        test_pid(0.7, 0.8, 0.001, L=50)
    
        test_pid(0.8, L=50)
    

      

    模拟了电动机电压的输出:

    • 从0秒开始到第9秒,要求输出电压为0V;
    • 从第10秒开始到第40秒,要求输出电压为1V;
    • 从第41秒开始到第50秒,要求输出电压为0.5V

    橘黄色线代表上述需求(理想输出电压)

    绿色线为PID算法输出带反馈积分的输出电压

    看得到P(比例)部分 是一个最重要的参数、I(积分)部分能让两条线完全重合(可能过于理想,有待验证)、D(微分)部分会对电压产生微调的上下波动影响

    PID算法的参数看来是能够影响元器件寿命的

  • 相关阅读:
    Ubuntu分区挂载
    YOLOv3:Demo needs OpenCV for webcam images
    tf.strided_slice函数
    numpy:np.random.seed()
    python:split()函数
    python:set() 函数
    python:zip() 函数
    python:enumerate 函数
    电脑无法上网,DNS出现fec0:0:0:ffff::1%1问题
    python:map 函数
  • 原文地址:https://www.cnblogs.com/aarond/p/PID.html
Copyright © 2020-2023  润新知