一、巴什博弈(Bash Game)
只有一堆n个物品,两个人从轮流中取出(1~m)个;最后取光者胜。
考虑到 若n=m+1 那么 第一个人不论如何取都不能取胜。
进一步我们发现 若 n=k*(m+1)+r; 先取者拿走 r 个,那么后者再拿(1~m)个
n=(k-1)*(m+1)+s; 先取者再拿走s 个 最后总能造成 剩下n=m+1 的局面。
因此,此时先手有必赢策略。
相对应的,若n=k*(m+1) 那么先取者必输。
#include<iostream> using namespace std; int main() { int n, m; while (scanf("%d%d", &n, &m) != EOF) { if (n%(m+1) != 0) printf("先取者赢 "); else printf("先取者输 "); } }
二、尼姆博弈(Nimm Game)
所有物品数目二进制异或 为0,则先手必输
所有物品数目二进制异或不为0,则后手必输
1、问题模型:有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
2、解决思路:用(a,b,c)表示某种局势,显证(0,0,0)是第一种奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。
搞定这个问题需要把必败态的规律找出:(a,b,c)是必败态等价于a^b^c=0(^表示异或运算)。
证明:(1)任何p(a,b,c)=0的局面出发的任意局面(a,b,c’);一定有p(a,b,c’)不等于0。否则可以得到c=c’。
(2)任何p(a,b,c)不等于0的局面都可以走向 p(a,b,c)=0的局面
(3)对于 (4,9,13) 这个容易验证是奇异局势
其中有两个8,两个4,两个1,非零项成对出现,这就是尼姆和为 零的本质。别人要是拿掉13里的8或者1,那你就拿掉对应的9 中的那个8或者1;别人要是拿 掉13里的4,你就拿掉4里的4; 别人如果拿掉13里的3,就把10作分解,然后想办法满 足非零项成对即可。
3、推广一:如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a^b,即可,因为有如下的运算结果: a^b^(a^b)=(a^a)^(b^b)=0^0=0。要将c 变为a^b,只从 c中减去 c-(a^b)
#include<iostream> using namespace std; int main() { int arr[10]; int n; scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &arr[i]); int ans = arr[0]; for (int i = 1; i < n; i++) ans ^= arr[i]; if (ans) printf("先取者赢 "); else printf("先取者输 "); }
三、威佐夫博奕
https://baike.baidu.com/item/%E5%A8%81%E4%BD%90%E5%A4%AB%E5%8D%9A%E5%BC%88/19858256?fr=aladdin
#include<iostream> using namespace std; int main() { int n, m; while (scanf("%d%d", &n, &m) != EOF) { if (n < m) swap(n, m); int k = n-m; n = (int)(k*(sqrt(5)+1)/2.0) if (n!=m) printf("先取者赢 "); else printf("先取者输 "); } }