• 2017 ICPC 西安站现场赛 A.XOR (线段树+线性基)


     XOR

    Consider an array A with n elements. Each of its element is A[i] (1 ≤ i ≤ n). Then gives two integers
    Q, K, and Q queries follow. Each query, give you L, R, you can get Z by the following rules.
     To get Z, at first you need to choose  some elements from A[L] to A[R], we call them A[i1], A[i2],
    . . . , A[it], Then you can get number Z = K or (A[i1], A[i2], . . . , A[it]).
       Please calculate the maximum Z for each query .

    Input
    Several test cases.
    First line an integer T (1 ≤ T ≤ 10). Indicates the number of test cases.
    Then T  test cases follows. Each test case begins with three integer N, Q, K (1 ≤ N ≤ 10000,1 ≤
    Q ≤ 100000, 0 ≤ K ≤ 100000). The next line has N integers indicate A[1] to A[N] (0 ≤ A[i] ≤ 108).
    Then Q lines, each line two integer L, R (1 ≤ L ≤ R ≤ N).

    Output
    For each query, print the answer in a single line.

    Sample Input
    1
    5 3 0
    1 2 3 4 5
    1 3
    2 4
    3 5

    Sample Output
    3
    7
    7

    题意:给出一个1个长度为n的数组A,然后给出q个询问对于每个询问,每次在下标为[l,r]的数中,选取一部分数,使得其异或值OR上k后最大,输出这个最大值

    分析:根据题意,能够想到需要用到线性基。然后因为是要求最后OR上k后最大,根据OR运算的性质,可以先将数组中的数的二进制位上,将k为1的位置都变为0.因为这些位置在最后OR上k后都会变为1,所以暂时不讨论它。比如现在数x为5(101),k为4(100),那么需要将x变为1.

    转换完成后,线性基的最大值OR上k就是答案,又因为题目是区间查询,所以需要用到线段树来维护线性基

    代码如下:

    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    using namespace std;
    const int MAXN=1e4+100;
    typedef long long LL;
    LL t,n,q,k,l,r,pd;
    int vis[35];
    
    long long read(){
        long long res = 0;
        int flag = 0;
        char ch;
        if ((ch = getchar()) == '-'){
            flag = 1;
        }
        else if(ch >= '0' && ch <= '9'){
            res = ch - '0';
        }
        while ((ch = getchar()) >= '0' && ch <= '9'){
            res = res * 10 + (ch - '0');
        }
    
        return flag ? -res : res;
    }
    
    struct L_B{
        long long d[61];
        int cnt;
        L_B()
        {
            memset(d,0,sizeof(d));
            cnt=0;
        }
        void clear()
        {
            memset(d,0,sizeof(d));
            cnt=0;
        }
        void insert(long long val)
        {
            for (int i=31;i>=0;i--)
                if (val&(1LL<<i))
                {
                    if (!d[i])
                    {
                        d[i]=val;
                        break;
                    }
                    val^=d[i];
                }
        }
        long long query_max()
        {
            long long ret=0;
            for (int i=31;i>=0;i--)
            {
                if ((ret^d[i])>ret)
                     ret^=d[i];
            }
            return ret;
        }
    };
    
    L_B R;
    L_B merge(const L_B &n1,const L_B &n2)
    {
        L_B ret=n1;
        for (int i=31;i>=0;i--)
            if (n2.d[i])
                ret.insert(n2.d[i]);
        return ret;
    }
    
    struct node
    {
        int l;
        int r;
        L_B A;
    }tree[MAXN<<2];
    void PushUp(int rt)
    {
      tree[rt].A=merge(tree[rt<<1].A,tree[rt<<1|1].A);
    }
    void BuildTree(int l,int r,int rt)
    {
        tree[rt].l=l;
        tree[rt].r=r;
        if(l==r)
        {
          LL x;
          x=read();
          x=x&pd;//转换后,再插入到线性基中
          tree[rt].A.clear();
          tree[rt].A.insert(x);
          return;
        }
        int mid=(tree[rt].l+tree[rt].r)/2;
        BuildTree(l,mid,rt<<1);
        BuildTree(mid+1,r,rt<<1|1);
        PushUp(rt);
    }
    void Query(int l,int r,int rt)
    {
        if(tree[rt].l==l&&tree[rt].r==r)
        {
          R=merge(R,tree[rt].A);
          return;
        }
        int mid=(tree[rt].l+tree[rt].r)/2;
        if(r<=mid)Query(l,r,rt<<1);
        else if(l>mid)Query(l,r,rt<<1|1);
        else
        {
            Query(l,mid,rt<<1);
            Query(mid+1,r,rt<<1|1);
        }
    }
    
    int main()
    {
        t=read();
        while(t--)
        {
            pd=0;
            memset(vis,0,sizeof(vis));
           n=read(),q=read(),k=read();
            for (int i=31;i>=0;i--)
            {
              if(k&(1LL<<i))
              vis[i]=1;
              else
              pd+=(1LL<<i);// 用来进行转换,pd&x即为转换后的值
            }
            BuildTree(1,n,1);
            while(q--)
            {
               l=read(),r=read();
                R.clear();
                Query(l,r,1);
                LL ans=(R.query_max()|k);
                printf("%lld
    ",ans);
            }
        }
        return 0;
    }

            

  • 相关阅读:
    使用带Arduino IDE & WIZ820io的ATmega1284P
    初学者使用IntellJ IDEA建立Struts2项目
    树状数组
    hdu 4605-Magic Ball Game(树状数组)
    hdu1547之BFS
    面向服务的体系结构(SOA)——(3)关于BPM
    电信运营商移动互联网发展分析
    共享IP云主机(VPS)玩转wdcp
    从 Windows 到 Android: 威胁的持续迁移
    java 存储oracle的clob字段
  • 原文地址:https://www.cnblogs.com/a249189046/p/8953588.html
Copyright © 2020-2023  润新知