给出一段长度为n的序列({a_i}),求其中长度为m的严格上升子序列个数(mod 10^9+7),(nleq 10^3)。
解
不难想到设(f[i][j])表示以第i个位置结尾,长度为j的LSIS,因此我们有
[f[i][j]=sum_{k=1,a_i>a_k}^{i-1}f[k][j-1]
]
边界:(f[i][1]=1,i=1,2,...,n),其余为0
答案:(sum_{i=1}^nf[i][m])
注意到这是(O(n^3))算法,优先考虑转移优化,问题实际上是要寻找前面(a_k)小于(a_i)的f前缀和,考虑给a排序,也就是给a离散化,在离散化的数组里面建立前缀和数据结构(如线段树,树状数组),每次在对应的位置上查询修改前缀和,于是可以优化为(O(n^2log^n))
参考代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define il inline
#define ri register
#define yyb 1000000007
using namespace std;
struct Map{
int a[1001],b[1001],n;
il void prepare(int m,int ar[]){
n=m;
for(ri int i(1);i<=n;++i)
a[i]=ar[i];sort(a+1,a+n+1);
for(ri int i(1);i<=n;++i)b[i]=dfs(ar[i]);
}
il int look(int x){
return b[x];
}
il int dfs(int x){
int l(1),mid,r(n);
while(l<=r){
mid=l+r>>1;
if(x>a[mid])l=mid+1;
else r=mid-1;
}return l;
}
}L;
struct lowbit{
int n,a[1001];
il void prepare(int m){
n=m,memset(a,0,sizeof(a));
}
il void change(int p,int v){
while(p<=n)(a[p]+=v)%=yyb,p+=-p&p;
}
il int ask(int p){
int ans(0);
while(p)(ans+=a[p])%=yyb,p-=-p&p;return ans;
}
}ar;
int a[1001],dp[1001][1001];
il void read(int&),work();
int main(){
int lsy,i;read(lsy);
for(i=1;i<=lsy;++i)printf("Case #%d: ",i),work();
return 0;
}
il void work(){
int n,m;read(n),read(m);
for(int i(1);i<=n;++i)read(a[i]);
L.prepare(n,a),memset(dp,0,sizeof(dp));
for(int i(1);i<=n;++i)dp[i][1]=1;
for(int i,j(2);j<=m;++j){
ar.prepare(n);
for(i=1;i<=n;++i)
dp[i][j]=ar.ask(L.look(i)-1),
ar.change(L.look(i),dp[i][j-1]);
}int ans(0);
for(int i(1);i<=n;++i)(ans+=dp[i][m])%=yyb;
printf("%d
",ans);
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}