小编综合了很多算法相关的书籍以及其他,总结了几种求斐波那契数列的方法
PS:其中的第83行的递归法是求斐波那契数列的经典方法
public class 斐波那契数列 {
//迭代法
public static int iteration(int n){ /*此处(包含下面所有方法)声明为静态方法,原因是在本类main()方法中调用
类中方法,对于一般的非static成员变量或方法,需要有一个对象的实例才能调用,所以要先生成对象的实例,他们才会实际的分配内存空间。
而对于static的对象或方法,在程序载入时便已经分配了内存空间,他只和特定的类想关联,无需实例化 */
int result = 1; //最后一个斐波那契数
int a[] = new int[n+1]; //存放斐波那契数,初始值为空,默认全为0
a[0] = 0;
a[1] = 1;
//System.out.println("迭代法计算斐波那契数结果:");
//System.out.print(a[0]+" "+a[1]+" ");
for(int i = 2;i < n+1;i++){
a[i] = a[i-1] + a[i-2];
//result = a[i];
//System.out.print(result+" "); //打印斐波那契数
}
//System.out.println();
result=a[n];
return result; //返回最后一个斐波那契数
}
//用迭代法寻找编程环境支持的最大整数(int型)的斐波那契数是第几个斐波那契数
public static int max_int_iteration(){
int a = 1,b = 1,c = 2;
int count = 3;
for( ;b < c; ){ //一旦c达到编程环境最大斐波那契数,便会产生内存溢出,从而变成一个负数,到此循环结束
a = b;
b = c;
c = a + b;
count++;
}
return count;
}
//用迭代法寻找编程环境支持的最大整数(long型)的斐波那契数是第几个斐波那契数
public static long max_long_iteration(){
long a = 1,b = 1,c = 2;
long count = 3;
for( ;b<c; ){ //一旦c达到编程环境最大斐波那契数,便会产生内存溢出,从而变成一个负数,到此循环结束
a = b;
b = c;
c = a + b;
count++;
}
return count;
}
//在1,5,10,50秒内使用迭代法算出的最大斐波那契数是第几个
public static void time_iteration(){
int a = 1,b = 1,c = 2;
long count = 3;
long a1 = 0,a2 = 0,a3 = 0,a4 = 0;
long t1 = System.currentTimeMillis();
long t2 = System.currentTimeMillis();
for( ;t2-t1 < 60000; ){
a = b;
b = c;
c = a + b;
count++;
t2 = System.currentTimeMillis();
if(t2-t1 == 1000)
a1 = count;
//System.out.println("1秒内最大斐波那契数是第:"+count+"个 ");
if(t2-t1 == 5000)
a2 = count;
//System.out.println("5秒内最大斐波那契数是第:"+count+"个 ");
if(t2-t1 == 10000)
a3 = count;
//System.out.println("10秒内最大斐波那契数是第:"+count+"个 ");
if(t2-t1 == 50000)
a4 = count;
//System.out.println("50秒内最大斐波那契数是第:"+count+"个 ");
}
System.out.println("迭代法1秒内最大斐波那契数是第:"+a1+"个 ");
System.out.println("迭代法5秒内最大斐波那契数是第:"+a2+"个 ");
System.out.println("迭代法10秒内最大斐波那契数是第:"+a3+"个 ");
System.out.println("迭代法50秒内最大斐波那契数是第:"+a4+"个 ");
}
//递归法
public static long recursion(long n){
long result = 0; //最后一个斐波那契数及存储中间斐波那契数的变量
if(n <= 0)
result = 0;
if(n == 1 || n == 2)
result = 1;
if(n > 2)
{
result = recursion(n-1) + recursion(n-2);
//System.out.print(result+" ");
}
return result;
}
//规定时间内,递归法计算出的最大斐波那契数是第几个
public static int recursion_time(long time){
long starttime_dg=System.currentTimeMillis();
int i=3;
long endtime_dg=0;
while(endtime_dg<starttime_dg+time*1000){
endtime_dg=System.currentTimeMillis();
i++;
recursion(i);
}
return i;
}
//递归法在1,5,10,50秒内算出的最大斐波那契数是第几个
public static void fbnq_recursion_time(){
System.out.println("1秒内最大斐波那契数是第:"+recursion_time(1)+"个 ");
System.out.println("5秒内最大斐波那契数是第:"+recursion_time(5)+"个 ");
System.out.println("10秒内最大斐波那契数是第:"+recursion_time(10)+"个 ");
System.out.println("50秒内最大斐波那契数是第:"+recursion_time(50)+"个 ");
}
//测试递归法在1,5,10,50秒内使用迭代法算出的最大斐波那契数是第几个
public static void time_recursion_test(){
long t1 = System.currentTimeMillis();
long t2 = 0;
int i = 3;
for(;t2-t1 > 60000;){
recursion(i);
i++;
t2 = System.currentTimeMillis();
if(t2-t1 == 1000)
System.out.println("1秒内最大斐波那契数是第:"+i+"个 ");
if(t2-t1 == 5000)
System.out.println("5秒内最大斐波那契数是第:"+i+"个 ");
if(t2-t1 == 10000)
System.out.println("10秒内最大斐波那契数是第:"+i+"个 ");
if(t2-t1 == 50000)
System.out.println("50秒内最大斐波那契数是第:"+i+"个 ");
}
}
//直接求值法(利用公式F(n) = [@n/sqrt(5)]快速计算第n个斐波那契数)
public static double formula(int n){
double result = 0;
double temp = Math.sqrt(5.0);
result = (1/temp)*(Math.pow((1+temp)/2,n)-Math.pow((1-temp)/2, n));
return result;
}
//利用直接求值法,出现误差时最小的n值
public static int min_formula(){
double result_fn=1;
int i=1;
while(result_fn-(double)iteration(i)<1){
result_fn=formula(i);
i++;
}
return i;
}
//新算法法
public static int new_way(int n){
//int a = 1,b = 1,c = 2,d = 3;
int result = 0; //定义最后一个斐波那契数
//根据输入n,求出最后一个斐波那契数
if(n == 0)
result = 0;
else if(n == 1 || n == 2)
result = 1;
else if(n == 3)
result = 2;
else if(n >= 4){ //若n大于4返回resul
int a1 = n/4;
int b1 = n%4;
int a = new_way(a1);
int b = new_way((a1+1));
int c = new_way((a1-1));
int d = new_way((a1+2));
if(b1 == 0)
result = (int) ((Math.pow(b,2) - Math.pow(c,2))*(Math.pow(c, 2) + 2*Math.pow(a, 2) + Math.pow(b,2)));
if(b1 == 1)
result = (int) (Math.pow((Math.pow(b,2) - Math.pow(c,2)),2) + Math.pow((Math.pow(a, 2) + Math.pow(b,2)),2));
if(b1 == 2)
result = (int) ((Math.pow(a, 2) + Math.pow(b,2))*(3*Math.pow(b,2)+Math.pow(a, 2)-2*Math.pow(c,2)));
if(b1 == 3)
result = (int) (Math.pow((Math.pow(a, 2) + Math.pow(b,2)),2) + Math.pow((Math.pow(d,2)-Math.pow(a,2)),2));
}
return result;
}
// 关联矩阵
private static final int[][] UNIT = { { 1, 1 }, { 1, 0 } };
// 全0矩阵
private static final int[][] ZERO = { { 0, 0 }, { 0, 0 } };
/**
* 求斐波那契数列
*
* @param n
* @return
*/
public static int[][] fb(int n) {
if (n == 0) {
return ZERO;
}
if (n == 1) {
return UNIT;
}
// n是奇数
if ((n & 1) == 0) {
int[][] matrix = fb(n >> 1);
return matrixMultiply(matrix, matrix);
}
// n是偶数
int[][] matrix = fb((n - 1) >> 1);
return matrixMultiply(matrixMultiply(matrix, matrix), UNIT);
}
/**
* 矩阵相乘
*
* @param m
* r1*c1
* @param n
* c1*c2
* @return 新矩阵,r1*c2
*/
public static int[][] matrixMultiply(int[][] m, int[][] n) {
int rows = m.length;
int cols = n[0].length;
int[][] r = new int[rows][cols];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
r[i][j] = 0;
for (int k = 0; k < m[i].length; k++) {
r[i][j] += m[i][k] * n[k][j];
}
}
}
return r;
}
//具体实现矩阵相乘算法
public static int matrix(int n){
int[][] m = fb(n);
return m[0][1];
}
public static void main(String[] args){
System.out.print(max_int_iteration());
System.out.println();
System.out.print(max_long_iteration());
System.out.println();
System.out.println();
long t1 = System.currentTimeMillis();
long a = recursion(47);
long t2 = System.currentTimeMillis();
System.out.println("递归法求斐波那契数:");
System.out.println(a);
System.out.println("递归算法Time is: " + (t2 - t1)/1000.0+"秒");
//此处下面可以直接通过给相关类传递参数,实现相应功能,上面的中代码仅仅提供示例
}
}