1 问题描述
有n个整数,请找出其中最小的k个数,要求时间复杂度尽可能低。
2 解决方案
2.1 全部排序法
先对这n个整数进行快速排序,在依次输出前k个数。
package com.liuzhen.array_2;
public class SearchMinK {
//方法1:全部排序
public void quickSort(int[] A,int start,int end){
if(end > start){
int k = LomutoPartition(A,start,end);
quickSort(A,start,k-1);
quickSort(A,k+1,end);
}
}
//返回数值result,满足: 左边部分< A[result] <=右边部分
public int LomutoPartition(int[] A,int start,int end){
if(start >= end)
return start;
int begin = A[start];
int result = start;
for(int i = start + 1;i <= end;i++){
if(A[i] < begin){
result++;
swap(A,i,result);
}
}
swap(A,start,result);
return result;
}
//交换数组m位置和n位置上的值
public void swap(int[] arrayA,int m,int n){
int temp = arrayA[m];
arrayA[m] = arrayA[n];
arrayA[n] = temp;
}
//输出数组前k个元素
public void printArrayK(int[] array,int k){
for(int i = 0;i < k;i++){
System.out.print(array[i]+" ");
}
}
public static void main(String[] args){
SearchMinK test = new SearchMinK();
int[] A = {9,8,7,5,4,3,2,1,6,3,4,5,12,32,3,2,1,4,6,34};
test.quickSort(A, 0, A.length-1);
System.out.println("对数组进行排序后结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("
"+"输出数组最小的5个数:");
test.printArrayK(A, 5);
}
}
运行结果:
对数组进行排序后结果:
1 1 2 2 3 3 3 4 4 4 5 5 6 6 7 8 9 12 32 34
输出数组最小的5个数:
1 1 2 2 3
2.2 部分排序法
具体操作步骤如下:
(1)遍历n个数,把最先遍历到的k个数存入到大小为k的数组中,假设他们就是最小的k个数;
(2)利用选择排序或交换排序找到这k个元素中的最大值kmax;
(3)继续遍历剩余的n-k个数。假设每次遍历到的新元素的值为x,把x与kmax进行比较:如果x<kmax,则用x替换kmax,并回到第2步重新找出k个元素的数组中新的最大元素kmax;如果x>=kmax,则继续遍历,不更新数组。
具体代码如下:
package com.liuzhen.array_2;
public class SearchMinK {
//方法2:部分排序
public void getArrayMinK(int[] A,int k){
if(k > A.length)
return;
while(true){
int max = getMaxArrayK(A,k); //当前数组前k个元素中的最大值
int count = 0;
for(int i = k;i < A.length;i++){
if(A[max] > A[i])
swap(A,max,i);
else
count++;
}
if(count == A.length-k)
break;
}
System.out.println("
"+"使用方法2进行部分排序后的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("
部分排序选出数组中最小的"+k+"个数:");
for(int i = 0;i < k;i++)
System.out.print(A[i]+" ");
}
//获取数组前k个元素的最大值的数组下标
public int getMaxArrayK(int[] A,int k){
int result = 0;
if(k > A.length)
return 0;
for(int i = 0;i < k;i++){
if(A[i] > A[result])
result = i;
}
return result;
}
//交换数组m位置和n位置上的值
public void swap(int[] arrayA,int m,int n){
int temp = arrayA[m];
arrayA[m] = arrayA[n];
arrayA[n] = temp;
}
public static void main(String[] args){
SearchMinK test = new SearchMinK();
int[] B = {9,8,7,5,4,3,2,1,6,3,4,5,12,32,3,2,1,4,6,34};
test.getArrayMinK(B, 5);
}
运行结果:
使用方法2进行部分排序后的结果:
1 1 2 2 3 9 8 7 6 5 4 5 12 32 4 3 3 4 6 34
部分排序选出数组中最小的5个数:
1 1 2 2 3
2.3 用堆代替数组法
此处思想和2.2中一致,唯一区别就是在寻找kmax时,是使用堆排序的思想。
具体代码如下:
package com.liuzhen.array_2;
public class SearchMinK {
//方法3:用堆来代替数组
/*
* 函数功能:对数组A前k个元素进行堆排序
*/
public void heapBottomUp(int[] A,int k){
for(int i = (k-1)/2;i >= 0;i--){
int temp = i;
int tempV = A[temp];
boolean heap = false;
while(!heap && 2*temp < k-1){
int j = 2*temp + 1;
if(j < k-1){
if(A[j] < A[j+1])
j = j + 1;
}
if(tempV >= A[j])
heap = true;
else{
A[temp] = A[j];
temp = j;
}
}
A[temp] = tempV;
}
}
public void getArrayMinK2(int[] A,int k){
heapBottomUp(A,k);
while(true){
int count = 0;
for(int i = k;i < A.length;i++){
if(A[i] < A[0]){
swap(A,i,0);
heapBottomUp(A,k);
}
else
count++;
}
if(count == A.length-k)
break;
}
System.out.println("
"+"使用方法3进行部分堆排序后的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("
部分排序选出数组中最小的"+k+"个数:");
for(int i = 0;i < k;i++)
System.out.print(A[i]+" ");
}
//交换数组m位置和n位置上的值
public void swap(int[] arrayA,int m,int n){
int temp = arrayA[m];
arrayA[m] = arrayA[n];
arrayA[n] = temp;
}
public static void main(String[] args){
SearchMinK test = new SearchMinK();
int[] D = {9,8,7,5,4,3,2,1,6,3,4,5,12,32,3,2,1,4,6,34};
test.getArrayMinK2(D, 5);
}
}
运行结果:
使用方法3进行部分堆排序后的结果:
3 2 2 1 1 9 8 7 6 5 4 5 12 32 4 3 3 4 6 34
部分排序选出数组中最小的5个数:
3 2 2 1 1
2.4线性选择算法
看具体代码即可理解其中蕴含的思想。
package com.liuzhen.array_2;
public class SearchMinK {
//返回数值result,满足: 左边部分< A[result] <=右边部分
public int LomutoPartition(int[] A,int start,int end){
if(start >= end)
return start;
int begin = A[start];
int result = start;
for(int i = start + 1;i <= end;i++){
if(A[i] < begin){
result++;
swap(A,i,result);
}
}
swap(A,start,result);
return result;
}
//方法4:线性选择法
public void getArrayMinK3(int[] A,int k){
int start = 0;
int end = A.length - 1;
int tempK = LomutoPartition(A,start,end);
while(tempK != k){
if(tempK > k){
end = tempK - 1;
tempK = LomutoPartition(A,start,end);
}
if(tempK < k){
start = tempK + 1;
tempK = LomutoPartition(A,start,end);
}
}
System.out.println("
"+"使用方法4进行快速选择排序后的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("
部分排序选出数组中最小的"+k+"个数:");
for(int i = 0;i < k;i++)
System.out.print(A[i]+" ");
}
public static void main(String[] args){
SearchMinK test = new SearchMinK();
int[] E = {9,8,7,5,4,3,2,1,6,3,4,5,12,32,3,2,1,4,6,34};
test.getArrayMinK3(E, 5);
}
}
运行结果:
使用方法4进行快速选择排序后的结果:
1 2 2 1 3 3 3 4 5 5 4 4 6 8 6 7 9 32 12 34
部分排序选出数组中最小的5个数:
1 2 2 1 3
此处附上四种方法的完整代码
package com.liuzhen.array_2;
public class SearchMinK {
//方法1:全部排序
public void quickSort(int[] A,int start,int end){
if(end > start){
int k = LomutoPartition(A,start,end);
quickSort(A,start,k-1);
quickSort(A,k+1,end);
}
}
//返回数值result,满足: 左边部分< A[result] <=右边部分
public int LomutoPartition(int[] A,int start,int end){
if(start >= end)
return start;
int begin = A[start];
int result = start;
for(int i = start + 1;i <= end;i++){
if(A[i] < begin){
result++;
swap(A,i,result);
}
}
swap(A,start,result);
return result;
}
//交换数组m位置和n位置上的值
public void swap(int[] arrayA,int m,int n){
int temp = arrayA[m];
arrayA[m] = arrayA[n];
arrayA[n] = temp;
}
//输出数组前k个元素
public void printArrayK(int[] array,int k){
for(int i = 0;i < k;i++){
System.out.print(array[i]+" ");
}
}
//方法2:部分排序
public void getArrayMinK(int[] A,int k){
if(k > A.length)
return;
while(true){
int max = getMaxArrayK(A,k); //当前数组前k个元素中的最大值
int count = 0;
for(int i = k;i < A.length;i++){
if(A[max] > A[i])
swap(A,max,i);
else
count++;
}
if(count == A.length-k)
break;
}
System.out.println("
"+"使用方法2进行部分排序后的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("
部分排序选出数组中最小的"+k+"个数:");
for(int i = 0;i < k;i++)
System.out.print(A[i]+" ");
}
//获取数组前k个元素的最大值的数组下标
public int getMaxArrayK(int[] A,int k){
int result = 0;
if(k > A.length)
return 0;
for(int i = 0;i < k;i++){
if(A[i] > A[result])
result = i;
}
return result;
}
//方法3:用堆来代替数组
/*
* 函数功能:对数组A前k个元素进行堆排序
*/
public void heapBottomUp(int[] A,int k){
for(int i = (k-1)/2;i >= 0;i--){
int temp = i;
int tempV = A[temp];
boolean heap = false;
while(!heap && 2*temp < k-1){
int j = 2*temp + 1;
if(j < k-1){
if(A[j] < A[j+1])
j = j + 1;
}
if(tempV >= A[j])
heap = true;
else{
A[temp] = A[j];
temp = j;
}
}
A[temp] = tempV;
}
}
public void getArrayMinK2(int[] A,int k){
heapBottomUp(A,k);
while(true){
int count = 0;
for(int i = k;i < A.length;i++){
if(A[i] < A[0]){
swap(A,i,0);
heapBottomUp(A,k);
}
else
count++;
}
if(count == A.length-k)
break;
}
System.out.println("
"+"使用方法3进行部分堆排序后的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("
部分排序选出数组中最小的"+k+"个数:");
for(int i = 0;i < k;i++)
System.out.print(A[i]+" ");
}
//方法4:线性选择法
public void getArrayMinK3(int[] A,int k){
int start = 0;
int end = A.length - 1;
int tempK = LomutoPartition(A,start,end);
while(tempK != k){
if(tempK > k){
end = tempK - 1;
tempK = LomutoPartition(A,start,end);
}
if(tempK < k){
start = tempK + 1;
tempK = LomutoPartition(A,start,end);
}
}
System.out.println("
"+"使用方法4进行快速选择排序后的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("
部分排序选出数组中最小的"+k+"个数:");
for(int i = 0;i < k;i++)
System.out.print(A[i]+" ");
}
public static void main(String[] args){
SearchMinK test = new SearchMinK();
int[] A = {9,8,7,5,4,3,2,1,6,3,4,5,12,32,3,2,1,4,6,34};
test.quickSort(A, 0, A.length-1);
System.out.println("对数组进行排序后结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("
"+"输出数组最小的5个数:");
test.printArrayK(A, 5);
int[] B = {9,8,7,5,4,3,2,1,6,3,4,5,12,32,3,2,1,4,6,34};
test.getArrayMinK(B, 5);
int[] C = {2,9,7,6,5,8};
test.heapBottomUp(C, 6);
System.out.println("
C数组:");
for(int i = 0;i < C.length;i++)
System.out.print(C[i]+" ");
int[] D = {9,8,7,5,4,3,2,1,6,3,4,5,12,32,3,2,1,4,6,34};
test.getArrayMinK2(D, 5);
int[] E = {9,8,7,5,4,3,2,1,6,3,4,5,12,32,3,2,1,4,6,34};
test.getArrayMinK3(E, 5);
}
}
完整代码