• 07 | 行锁功过:怎么减少行锁对性能的影响?


    在上一篇文章中,我跟你介绍了MySQL的全局锁和表级锁,今天我们就来讲讲MySQL的行锁。

    MySQL的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如MyISAM引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁,对于这种引擎的表,同一张表上任何时刻只能有一个更新在执行,这就会影响到业务并发度。InnoDB是支持行锁的,这也是MyISAM被InnoDB替代的重要原因之一。

    我们今天就主要来聊聊InnoDB的行锁,以及如何通过减少锁冲突来提升业务并发度。

    顾名思义,行锁就是针对数据表中行记录的锁。这很好理解,比如事务A更新了一行,而这时候事务B也要更新同一行,则必须等事务A的操作完成后才能进行更新。

    当然,数据库中还有一些没那么一目了然的概念和设计,这些概念如果理解和使用不当,容易导致程序出现非预期行为,比如两阶段锁。

    从两阶段锁说起

    我先给你举个例子。在下面的操作序列中,事务B的update语句执行时会是什么现象呢?假设字段id是表t的主键。

    这个问题的结论取决于事务A在执行完两条update语句后,持有哪些锁,以及在什么时候释放。你可以验证一下:实际上事务B的update语句会被阻塞,直到事务A执行commit之后,事务B才能继续执行。

    知道了这个答案,你一定知道了事务A持有的两个记录的行锁,都是在commit的时候才释放的。

    也就是说,在InnoDB事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。

    知道了这个设定,对我们使用事务有什么帮助呢?那就是,如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。我给你举个例子。

    假设你负责实现一个电影票在线交易业务,顾客A要在影院B购买电影票。我们简化一点,这个业务需要涉及到以下操作:

    1. 从顾客A账户余额中扣除电影票价;

    2. 给影院B的账户余额增加这张电影票价;

    3. 记录一条交易日志。

    也就是说,要完成这个交易,我们需要update两条记录,并insert一条记录。当然,为了保证交易的原子性,我们要把这三个操作放在一个事务中。那么,你会怎样安排这三个语句在事务中的顺序呢?

    试想如果同时有另外一个顾客C要在影院B买票,那么这两个事务冲突的部分就是语句2了。因为它们要更新同一个影院账户的余额,需要修改同一行数据。

    根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。所以,如果你把语句2安排在最后,比如按照3、1、2这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。

    好了,现在由于你的正确设计,影院余额这一行的行锁在一个事务中不会停留很长时间。但是,这并没有完全解决你的困扰。

    如果这个影院做活动,可以低价预售一年内所有的电影票,而且这个活动只做一天。于是在活动时间开始的时候,你的MySQL就挂了。你登上服务器一看,CPU消耗接近100%,但整个数据库每秒就执行不到100个事务。这是什么原因呢?

    这里,我就要说到死锁和死锁检测了。

    死锁和死锁检测

    当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。这里我用数据库中的行锁举个例子。

    这时候,事务A在等待事务B释放id=2的行锁,而事务B在等待事务A释放id=1的行锁。 事务A和事务B在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:

    • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数innodb_lock_wait_timeout来设置。
    • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数innodb_deadlock_detect设置为on,表示开启这个逻辑。

    在InnoDB中,innodb_lock_wait_timeout的默认值是50s,意味着如果采用第一个策略,当出现死锁以后,第一个被锁住的线程要过50s才会超时退出,然后其他线程才有可能继续执行。对于在线服务来说,这个等待时间往往是无法接受的。

    但是,我们又不可能直接把这个时间设置成一个很小的值,比如1s。这样当出现死锁的时候,确实很快就可以解开,但如果不是死锁,而是简单的锁等待呢?所以,超时时间设置太短的话,会出现很多误伤。

    所以,正常情况下我们还是要采用第二种策略,即:主动死锁检测,而且innodb_deadlock_detect的默认值本身就是on。主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。

    你可以想象一下这个过程:每当一个事务被锁的时候,就要看看它所依赖的线程有没有被别人锁住,如此循环,最后判断是否出现了循环等待,也就是死锁。

    那如果是我们上面说到的所有事务都要更新同一行的场景呢?

    每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是O(n)的操作。假设有1000个并发线程要同时更新同一行,那么死锁检测操作就是100万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的CPU资源。因此,你就会看到CPU利用率很高,但是每秒却执行不了几个事务。

    根据上面的分析,我们来讨论一下,怎么解决由这种热点行更新导致的性能问题呢?问题的症结在于,死锁检测要耗费大量的CPU资源。

    一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。

    另一个思路是控制并发度。根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有10个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有600个客户端,这样即使每个客户端控制到只有5个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到3000。

    因此,这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改MySQL源码的人,也可以做在MySQL里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在InnoDB内部就不会有大量的死锁检测工作了。

    可能你会问,如果团队里暂时没有数据库方面的专家,不能实现这样的方案,能不能从设计上优化这个问题呢?

    你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如10个记录,影院的账户总额等于这10个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的1/10,可以减少锁等待个数,也就减少了死锁检测的CPU消耗。

    这个方案看上去是无损的,但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可能会减少,比如退票逻辑,那么这时候就需要考虑当一部分行记录变成0的时候,代码要有特殊处理。

    小结

    今天,我和你介绍了MySQL的行锁,涉及了两阶段锁协议、死锁和死锁检测这两大部分内容。

    其中,我以两阶段协议为起点,和你一起讨论了在开发的时候如何安排正确的事务语句。这里的原则/我给你的建议是:如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁的申请时机尽量往后放。

    但是,调整语句顺序并不能完全避免死锁。所以我们引入了死锁和死锁检测的概念,以及提供了三个方案,来减少死锁对数据库的影响。减少死锁的主要方向,就是控制访问相同资源的并发事务量。

    最后,我给你留下一个问题吧。如果你要删除一个表里面的前10000行数据,有以下三种方法可以做到:

    • 第一种,直接执行delete from T limit 10000;
    • 第二种,在一个连接中循环执行20次 delete from T limit 500;
    • 第三种,在20个连接中同时执行delete from T limit 500。

    你会选择哪一种方法呢?为什么呢?

    你可以把你的思考和观点写在留言区里,我会在下一篇文章的末尾和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

    上期问题时间

    上期我给你留的问题是:当备库用–single-transaction做逻辑备份的时候,如果从主库的binlog传来一个DDL语句会怎么样?

    假设这个DDL是针对表t1的, 这里我把备份过程中几个关键的语句列出来:

    Q1:SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
    Q2:START TRANSACTION WITH CONSISTENT SNAPSHOT;
    /* other tables */
    Q3:SAVEPOINT sp;
    /* 时刻 1 */
    Q4:show create table `t1`;
    /* 时刻 2 */
    Q5:SELECT * FROM `t1`;
    /* 时刻 3 */
    Q6:ROLLBACK TO SAVEPOINT sp;
    /* 时刻 4 */
    /* other tables */
    

    在备份开始的时候,为了确保RR(可重复读)隔离级别,再设置一次RR隔离级别(Q1);

    启动事务,这里用 WITH CONSISTENT SNAPSHOT确保这个语句执行完就可以得到一个一致性视图(Q2);

    设置一个保存点,这个很重要(Q3);

    show create 是为了拿到表结构(Q4),然后正式导数据 (Q5),回滚到SAVEPOINT sp,在这里的作用是释放 t1的MDL锁 (Q6。当然这部分属于“超纲”,上文正文里面都没提到。

    DDL从主库传过来的时间按照效果不同,我打了四个时刻。题目设定为小表,我们假定到达后,如果开始执行,则很快能够执行完成。

    参考答案如下:

    1. 如果在Q4语句执行之前到达,现象:没有影响,备份拿到的是DDL后的表结构。

    2. 如果在“时刻 2”到达,则表结构被改过,Q5执行的时候,报 Table definition has changed, please retry transaction,现象:mysqldump终止;

    3. 如果在“时刻2”和“时刻3”之间到达,mysqldump占着t1的MDL读锁,binlog被阻塞,现象:主从延迟,直到Q6执行完成。

    4. 从“时刻4”开始,mysqldump释放了MDL读锁,现象:没有影响,备份拿到的是DDL前的表结构。

  • 相关阅读:
    阿里Java开发规约【摘录】
    JavaWeb【八、JSP指令与动作元素】
    JavaWeb【七、JSP状态管理】
    JavaWeb【六、JavaBean】
    JavaWeb【五、内置对象】
    JavaWeb【四、JSP基础语法】
    JavaWeb【三、Web程序编写】
    JavaWeb【二、Tomcat安装】
    Django 模板层
    Django auth模块
  • 原文地址:https://www.cnblogs.com/a-phper/p/10313876.html
Copyright © 2020-2023  润新知