• ccnu-线段树-单点更新3-C


    C - 单点更新3
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
    Submit
     
    Status
    Description
    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj. 
    
    For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following: 
    
    a1, a2, ..., an-1, an (where m = 0 - the initial seqence) 
    a2, a3, ..., an, a1 (where m = 1) 
    a3, a4, ..., an, a1, a2 (where m = 2) 
    ... 
    an, a1, a2, ..., an-1 (where m = n-1) 
    
    You are asked to write a program to find the minimum inversion number out of the above sequences. 
     
    Input
    The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1. 
     
    Output
    For each case, output the minimum inversion number on a single line. 
     
    Sample Input
     10
    1 3 6 9 0 8 5 7 4 2 
     
    Sample Output
     16 
    
    代码如下:
    【还是模板题,~T^T呜呜呜~没把题意读清楚,搞得理解了半天,讨厌死了~话说用线段树比暴力快了100倍呢⊙﹏⊙】
    #include <cstdio>
    #include <algorithm>
    using namespace std;
     
    #define lson l , m , rt << 1
    #define rson m + 1 , r , rt << 1 | 1
    const int maxn = 5010;
    int sum[maxn<<2];
    void PushUP(int rt) {
    	sum[rt] = sum[rt<<1] + sum[rt<<1|1];
    }
    void build(int l,int r,int rt) {
    	sum[rt] = 0;
    	if (l == r) return ;
    	int m = (l + r) >> 1;
    	build(lson);
    	build(rson);
    }
    void update(int p,int l,int r,int rt) {
    	if (l == r) {
    		sum[rt] ++;
    		return ;
    	}
    	int m = (l + r) >> 1;
    	if (p <= m) update(p , lson);
    	else update(p , rson);
    	PushUP(rt);
    }
    int query(int L,int R,int l,int r,int rt) {
    	if (L <= l && r <= R) {
    		return sum[rt];
    	}
    	int m = (l + r) >> 1;
    	int ret = 0;
    	if (L <= m) ret += query(L , R , lson);
    	if (R > m) ret += query(L , R , rson);
    	return ret;
    }
    int x[maxn];
    int main() {
    	int n;
    	while (~scanf("%d",&n)) {
    		build(0 , n - 1 , 1);
    		int sum = 0;
    		for (int i = 0 ; i < n ; i ++) {
    			scanf("%d",&x[i]);
    			sum += query(x[i] , n - 1 , 0 , n - 1 , 1);
    			update(x[i] , 0 , n - 1 , 1);
    		}
    		int ret = sum;
    		for (int i = 0 ; i < n ; i ++) {
    			sum += n - x[i] - x[i] - 1;
    			ret = min(ret , sum);
    		}
    		printf("%d
    ",ret);
    	}
    	return 0;
    }


    
    
    
  • 相关阅读:
    1、线性DP 198. 打家劫舍
    1、线性DP 354. 俄罗斯套娃信封问题
    127. 单词接龙
    1. 线性DP 887. 鸡蛋掉落 (DP+二分)
    200. 岛屿数量
    1. 线性DP 152. 乘积最大子数组
    1. 线性DP 53. 最大子序和.
    1. 线性DP 120. 三角形最小路径和
    如何在RHEL 8上安装Python 3
    在Ubuntu 20.04 LTS Focal Fossa上安装Drupal
  • 原文地址:https://www.cnblogs.com/ZiningTang/p/3834717.html
Copyright © 2020-2023  润新知