• n个元素进栈,共有多少种出栈顺序?


    近日在复习数据结构,看到栈的时候,发现1个元素进栈,有1种出栈顺序;2个元素进栈,有2种出栈顺序;3个元素进栈,有5种出栈顺序,那么一个很自然地问题就是n个元素进栈,共有多少种出栈顺序?


    说来惭愧,以前学数据结构的时候竟然没有考虑过这个问题。最近在看动态规划,所以“子问题”这3个字一直在我脑中徘徊,于是解决这个问题的时候我也是用类似“子问题”的方法,说白了就是递推公式。


    我们把n个元素的出栈个数的记为f(n), 那么对于1,2,3, 我们很容易得出:


                                         f(1) = 1     //即 1

                                         f(2) = 2     //即 12、21

                                         f(3) = 5     //即 123、132、213、321、231


    然后我们来考虑f(4), 我们给4个元素编号为a,b,c,d, 那么考虑:元素a只可能出现在1号位置,2号位置,3号位置和4号位置(很容易理解,一共就4个位置,比如abcd,元素a就在1号位置)。

    分析:


     1) 如果元素a在1号位置,那么只可能a进栈,马上出栈,此时还剩元素b、c、d等待操作,就是子问题f(3);

     2) 如果元素a在2号位置,那么一定有一个元素比a先出栈,即有f(1)种可能顺序(只能是b),还剩c、d,即f(2),     根据乘法原理,一共的顺序个数为f(1) * f(2);

     3) 如果元素a在3号位置,那么一定有两个元素比1先出栈,即有f(2)种可能顺序(只能是b、c),还剩d,即f(1),

        根据乘法原理,一共的顺序个数为f(2) * f(1);

     4) 如果元素a在4号位置,那么一定是a先进栈,最后出栈,那么元素b、c、d的出栈顺序即是此小问题的解,即         f(3);


    结合所有情况,即f(4) = f(3) + f(2) * f(1) + f(1) * f(2) + f(3);

    为了规整化,我们定义f(0) = 1;于是f(4)可以重新写为:

    f(4) = f(0)*f(3) + f(1)*f(2) + f(2) * f(1) + f(3)*f(0)


    然后我们推广到n,推广思路和n=4时完全一样,于是我们可以得到:

    f(n) = f(0)*f(n-1) + f(1)*f(n-2) + ... + f(n-1)*f(0)


     



    但这只是一个递推公式(若编程实现,需要维护一个一维数组,时间复杂度为O(n^2))。怎么把它转化为通项公式呢,复杂度仅为O(1)?


    于是上网搜索一下,原来真的有这么一个公式:C(2n,n)/(n+1) (C(2n,n)表示2n里取n),并且有个名字叫Catalan数。附上wiki的链接,写得太详细了:http://en.wikipedia.org/wiki/Catalan_number  


    现在的问题就是:怎么从上述的递推公式求出C(2n,n)/(n+1) ? 有兴趣的朋友欢迎留言讨论!

    //2013.6.4 update
    根据网友u010896627的思路,我抽象了下问题,在知乎上问了个问题,其中有一个答案提出了“折现法”,从几何上推出了“n个元素进栈有多少个出栈顺序”这个问题的答案是C(2n,n)-C(2n,n-1),化简一下即得Catalan number。推荐大家看一看。





  • 相关阅读:
    [转载]注解
    Spring可扩展的XML Schema机制 NamespaceHandlerSupport
    jvm中的年轻代 老年代 持久代 gc ----------转载
    反射原理
    舍入误差
    mysql突然宕机后事务如何处理?
    redis为什么设计成单线程并且还这么快?
    mysql架构学习
    用户级线程和内核级线程的区别
    G1垃圾收集器
  • 原文地址:https://www.cnblogs.com/Zhoust/p/14994608.html
Copyright © 2020-2023  润新知