• Problem : [Usaco2009 Jan]Best Spot


    Problem : [Usaco2009 Jan]Best Spot

    Problem : [Usaco2009 Jan]Best Spot

    Time Limit: 1 Sec  Memory Limit: 128 MB
    [Submit][Status][Web Board]

    Description

    Bessie, always wishing to optimize her life, has realized that she really enjoys visiting F (1 <= F <= P) favorite pastures F_i of the P (1 <= P <= 500; 1 <= F_i <= P) total pastures (conveniently

    numbered 1..P) that compose Farmer John's holdings.

    Bessie knows that she can navigate the C (1 <= C <= 8,000) bidirectional cowpaths (conveniently numbered 1..C) that connect various pastures to travel to any pasture on the entire farm. Associated with each path P_i is a time T_i (1 <= T_i <= 892) to traverse that path (in either direction) and two path endpoints a_i and b_i (1 <= a_i <= P; 1 <= b_i <= P).

    Bessie wants to find the number of the best pasture to sleep in so that when she awakes, the average time to travel to any of her F favorite pastures is minimized.

    By way of example, consider a farm laid out as the map below shows, where *'d pasture numbers are favorites. The bracketed numbers are times to traverse the cowpaths.

                1*--[4]--2--[2]--3
                         |       |
                        [3]     [4]
                         |       |
                         4--[3]--5--[1]---6---[6]---7--[7]--8*
                         |       |        |         |
                        [3]     [2]      [1]       [3]
                         |       |        |         |
                        13*      9--[3]--10*--[1]--11*--[3]--12*

    The following table shows distances for potential 'best place' of pastures 4, 5, 6, 7, 9, 10, 11, and 12:

          * * * * * * Favorites * * * * * *
     Potential      Pasture Pasture Pasture Pasture Pasture Pasture     Average
    Best Pasture       1       8      10      11      12      13        Distance
    ------------      --      --      --      --      --      --      -----------
        4              7      16       5       6       9       3      46/6 = 7.67
        5             10      13       2       3       6       6      40/6 = 6.67
        6             11      12       1       2       5       7      38/6 = 6.33
        7             16       7       4       3       6      12      48/6 = 8.00
        9             12      14       3       4       7       8      48/6 = 8.00
       10             12      11       0       1       4       8      36/6 = 6.00 ** BEST
       11             13      10       1       0       3       9      36/6 = 6.00
       12             16      13       4       3       0      12      48/6 = 8.00
    

    Input

    第1行输入三个整数P,F C.之后F行每行输入一个整数表示一个贝茜喜欢的牧场.
    之后C行每行输入三个整数ai,bi,Ti,描述一条路.

    Output

    一个整数,满足题目要求的最佳牧场.如果有多个答案,输出编号最小的

    Sample Input

    5 5
    13 6 15
    11
    13
    10
    12
    8
    1
    2 4 3
    7 11 3
    10 11 1
    4 13 3
    9 10 3
    2 3 2
    3 5 4
    5 9 2
    6 7 6
    5 6 1
    1 2 4
    4 5 3
    11 12 3
    6 10 1
    7 8 7

    Sample Output

    10
    

    HINT

    [Submit][Status]
    #include<stdio.h>
    #include<string.h>
    class BestSpot {
    	public:
    		int g[501][501],p,f,c,l[501];
    		void init() {
    			scanf("%d %d %d",&p,&f,&c);
    			memset(g,0x3f,sizeof(g));
    			for(i=1; i<=f; i++)
    				scanf("%d",&l[i]);
    			for(i=1; i<=c; i++)
    				scanf("%d %d %d",&u,&v,&w),g[u][v]=g[v][u]=w;
    			for(i=1; i<=p; i++)
    				g[i][i]=0;
    		}
    		void work() {
    			for(k=1; k<=p; k++)
    				for(i=1; i<=p; i++)
    					for(j=1; j<=p; j++)
    						if(g[i][k]+g[k][j]<g[i][j])
    							g[i][j]=g[i][k]+g[k][j];
    		}
    		void print() {
    			for(i=1; i<=p; i++) {
    				sum=0;
    				for(j=1; j<=f; j++)
    					if(g[i][l[j]]!=0x3f3f3f3f)sum+=g[i][l[j]];
    				if(sum<mn)
    					mn=sum,ans=i;
    			}
    			printf("%d",ans);
    		}
    	private:
    		int i,j,k,u,v,w,sum,ans,mn=0x7fffffff;
    };
    int main() {
    	BestSpot Bessie;
    	Bessie.init();
    	Bessie.work();
    	Bessie.print();
    }
    
  • 相关阅读:
    马哥博客作业第四周
    马哥博客作业第三周
    马哥博客作业第二周
    马哥博客作业第一周
    YUM常用命令
    RPM常用命令
    马哥博客作业第五周
    《现代操作系统》—— 第9章 文件系统(一)
    《现代操作系统》—— 第8章 存储模型(二) 虚拟存储技术
    《现代操作系统》—— 第7章 存储模型(一)
  • 原文地址:https://www.cnblogs.com/ZhaoChongyan/p/11740396.html
Copyright © 2020-2023  润新知