这题目是经典的DP题目,也可叫作LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列。很基础的题目,有两种算法,复杂度分别为O(n*logn)和O(n^2) 。
A.
O(n^2)算法分析如下:
(a[1]...a[n] 存的都是输入的数)
1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列;
2、若从a[n-1]开始查找,则存在下面的两种可能性:
(1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n];
(2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。
3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的:
在a[t+1],a[t+2],...a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。
4、为算法上的需要,定义一个数组:
int d[n][3];
d[t][0]表示a[t];
d[t][1]表示从i位置到达n的最长不下降子序列的长度;
d[t][2]表示从i位置开始最长不下降子序列的下一个位置。
实现代码如下:
- #include <iostream>
- using namespace std;
- int main(void)
- {
- int i,j,n,a[100],b[100],max;
- while(cin>>n)
- {
- for(i=0;i<n;i++)
- cin>>a[i];
- b[0]=1; //初始化,以a[0]结尾的最长递增子序列长度为1
- for(i=1;i<n;i++)
- {
- b[i]=1; //b[i]最小值为1
- for(j=0;j<i;j++)
- if(a[i]>a[j]&&b[j]+1>b[i])
- b[i]=b[j]+1;
- }
- for(max=i=0;i<n;i++)//求出整个数列的最长递增子序列的长度
- if(b[i]>max)
- max=b[i];
- cout<<max<<endl;
- }
- return 0;
- }
显然,这种方法的时间复杂度仍为o(n^2);
B.
最长不下降子序列的O(nlogn)算法分析如下:
设 A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F [t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。
现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足
(1)x < y < t
(2)A[x] < A[y] < A[t]
(3)F[x] = F[y]
此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?
很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。
再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。
注意到D[]的两个特点:
(1) D[k]的值是在整个计算过程中是单调不下降的。
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。
利 用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有A [t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,更新D[k] = A[t]。最后,len即为所要求的最长上
升子序列的长度。
在 上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的 时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法 的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!
- #include <iostream>
- using namespace std;
- int find(int *a,int len,int n)//若返回值为x,则a[x]>=n>a[x-1]
- {
- int left=0,right=len,mid=(left+right)/2;
- while(left<=right)
- {
- if(n>a[mid]) left=mid+1;
- else if(n<a[mid]) right=mid-1;
- else return mid;
- mid=(left+right)/2;
- }
- return left;
- }
- void fill(int *a,int n)
- {
- for(int i=0;i<=n;i++)
- a[i]=1000;
- }
- int main(void)
- {
- int max,i,j,n,a[100],b[100],c[100];
- while(cin>>n)
- {
- fill(c,n+1);
- for(i=0;i<n;i++)
- cin>>a[i];
- c[0]=-1;// …………………………………1
- c[1]=a[0];// …………………………2
- b[0]=1;// …………………………………3
- for(i=1;i<n;i++)// ………………4
- {
- j=find(c,n+1,a[i]);// …………………5
- c[j]=a[i];// ………………………………6
- b[i]=j;//……………………………………7
- }
- for(max=i=0;i<n;i++)// ………………………8
- if(b[i]>max)
- max=b[i];
- cout<<max<<endl;
- }
- return 0;
- }
对于这段程序,我们可以用算法导论上的loop invariants来帮助理解.
loop invariant : 1、每次循环结束后c都是单调递增的。(这一性质决定了可以用二分查找)
2、每次循环后,c[i]总是保存长度为i的递增子序列的最末的元素,若长度为i的递增子序
列有多个,刚保存末尾元素最小的那个.(这一性质决定是第3条性质成立的前提)
3、每次循环完后,b[i]总是保存以a[i]结尾的最长递增子序列。
initialization: 1、进入循环之前,c[0]=-1,c[1]=a[0],c的其他元素均为1000,c是单调递增的;
2、进入循环之前,c[1]=a[0],保存了长度为1时的递增序列的最末的元素,且此时长度为1
的递增了序列只有一个,c[1]也是最小的;
3、进入循环之前,b[0]=1,此时以a[0]结尾的最长递增子序列的长度为1.
maintenance: 1、若在第n次循环之前c是单调递增的,则第n次循环时,c的值只在第6行发生变化,而由
c进入循环前单调递增及find函数的性质可知(见find的注释),
此时c[j+1]>c[j]>=a[i]>c[j-1],所以把c[j]的值更新为a[i]后,c[j+1]>c[j]> c[j-1]的性质仍然成
立,即c仍然是单调递增的;
2、循环中,c的值只在第6行发生变化,由c[j]>=a[i]可知,c[j]更新为a[i]后,c[j]的值只会变
小不会变大,因为进入循环前c[j]的值是最小的,则循环中把c[j]更新为更小的a[i],当
然此时c[j]的值仍是最小的;
3、循环中,b[i]的值在第7行发生了变化,因为有loop invariant的性质2,find函数返回值
为j有:c[j-1]<a[i]<=c[j],这说明c[j-1]是小于a[i]的,且以c[j-1]结尾的递增子序列有最大的
长度,即为j-1,把a[i]接在c[j-1]后可得到以a[i]结尾的最长递增子序列,长度为(j-1)+1=j;
termination: 循环完后,i=n-1,b[0],b[1],...,b[n-1]的值均已求出,即以a[0],a[1],...,a[n-1]结尾的最长递
增子序列的长度均已求出,再通过第8行的循环,即求出了整个数组的最长递增子序列。
仔细分析上面的代码可以发现,每次循环结束后,假设已经求出c[1],c[2],c[3],...,c[len]的值,则此时最长递增子序列的长度为 len,因此可以把上面的代码更加简化,即可以不需要数组b来辅助存储,第8行的循环也可以省略。
- #include <iostream>
- using namespace std;
- int find(int *a,int len,int n)//修改后的二分查找,若返回值为x,则a[x]>=n
- {
- int left=0,right=len,mid=(left+right)/2;
- while(left<=right)
- {
- if(n>a[mid]) left=mid+1;
- else if(n<a[mid]) right=mid-1;
- else return mid;
- mid=(left+right)/2;
- }
- return left;
- }
- int main(void)
- {
- int n,a[100],c[100],i,j,len;//新开一变量len,用来储存每次循环结束后c中已经求出值的元素的最大下标
- while(cin>>n)
- {
- for(i=0;i<n;i++)
- cin>>a[i];
- b[0]=1;
- c[0]=-1;
- c[1]=a[0];
- len=1;//此时只有c[1]求出来,最长递增子序列的长度为1.
- for(i=1;i<n;i++)
- {
- j=find(c,len,a[i]);
- c[j]=a[i];
- if(j>len)//要更新len,另外补充一点:由二分查找可知j只可能比len大1
- len=j;//更新len
- }
- cout<<len<<endl;
- }
- return 0;
- }