• 最长上升子序列nlogn算法


    这题目是经典的DP题目,也可叫作LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列。很基础的题目,有两种算法,复杂度分别为O(n*logn)和O(n^2) 。


    A.
    O(n^2)算法分析如下: 


    (a[1]...a[n] 存的都是输入的数) 
    1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列; 

     

    2、若从a[n-1]开始查找,则存在下面的两种可能性: 
       (1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n];
       (2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。 

     

    3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的: 
        在a[t+1],a[t+2],...a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。 

     

    4、为算法上的需要,定义一个数组:
        int d[n][3]; 
        d[t][0]表示a[t]; 
        d[t][1]表示从i位置到达n的最长不下降子序列的长度;
        d[t][2]表示从i位置开始最长不下降子序列的下一个位置。

     

    实现代码如下:
        

    1. #include <iostream>  
    2. using namespace std;  
    3. int main(void)  
    4. {  
    5.     int i,j,n,a[100],b[100],max;  
    6.     while(cin>>n)  
    7.     {  
    8.         for(i=0;i<n;i++)  
    9.             cin>>a[i];  
    10.         b[0]=1;             //初始化,以a[0]结尾的最长递增子序列长度为1  
    11.         for(i=1;i<n;i++)  
    12.         {  
    13.             b[i]=1;         //b[i]最小值为1  
    14.             for(j=0;j<i;j++)  
    15.                 if(a[i]>a[j]&&b[j]+1>b[i])  
    16.                     b[i]=b[j]+1;  
    17.         }  
    18.         for(max=i=0;i<n;i++)//求出整个数列的最长递增子序列的长度  
    19.             if(b[i]>max)  
    20.             max=b[i];  
    21.         cout<<max<<endl;  
    22.     }  
    23.       return 0;  
    24. }  

        显然,这种方法的时间复杂度仍为o(n^2);

    B.

    最长不下降子序列的O(nlogn)算法分析如下: 

    设 A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F [t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。 

    现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足 
    (1)x < y < t 
    (2)A[x] < A[y] < A[t] 
    (3)F[x] = F[y] 

     

    此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢? 

     

    很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。 
    再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。 

    注意到D[]的两个特点: 
    (1) D[k]的值是在整个计算过程中是单调不下降的。 
    (2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。 

    利 用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有A [t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,更新D[k] = A[t]。最后,len即为所要求的最长上 升子序列的长度。 

    在 上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的 时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法 的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!

      

    1. #include <iostream>  
    2. using namespace std;  
    3. int find(int *a,int len,int n)//若返回值为x,则a[x]>=n>a[x-1]  
    4. {  
    5.     int left=0,right=len,mid=(left+right)/2;  
    6.     while(left<=right)  
    7.     {  
    8.         if(n>a[mid]) left=mid+1;  
    9.         else if(n<a[mid]) right=mid-1;  
    10.         else return mid;  
    11.         mid=(left+right)/2;  
    12.     }  
    13.     return left;    
    14. }  
    15.        
    16. void fill(int *a,int n)  
    17. {  
    18.     for(int i=0;i<=n;i++)  
    19.         a[i]=1000;  
    20. }  
    21.        
    22. int main(void)  
    23. {  
    24.     int max,i,j,n,a[100],b[100],c[100];  
    25.     while(cin>>n)  
    26.     {  
    27.         fill(c,n+1);  
    28.         for(i=0;i<n;i++)  
    29.             cin>>a[i];  
    30.         c[0]=-1;//     …………………………………1  
    31.         c[1]=a[0];//         …………………………2  
    32.         b[0]=1;//      …………………………………3  
    33.         for(i=1;i<n;i++)//           ………………4  
    34.         {  
    35.             j=find(c,n+1,a[i]);//  …………………5  
    36.             c[j]=a[i];// ………………………………6  
    37.             b[i]=j;//……………………………………7  
    38.         }  
    39.         for(max=i=0;i<n;i++)// ………………………8  
    40.             if(b[i]>max)  
    41.                 max=b[i];  
    42.        cout<<max<<endl;  
    43.     }  
    44.     return 0;  
    45. }   
     

       

     

        对于这段程序,我们可以用算法导论上的loop invariants来帮助理解.
        loop invariant : 1、每次循环结束后c都是单调递增的。(这一性质决定了可以用二分查找)
                            2、每次循环后,c[i]总是保存长度为i的递增子序列的最末的元素,若长度为i的递增子序

                                列有多个,刚保存末尾元素最小的那个.(这一性质决定是第3条性质成立的前提)
                            3、每次循环完后,b[i]总是保存以a[i]结尾的最长递增子序列。
        initialization:     1、进入循环之前,c[0]=-1,c[1]=a[0],c的其他元素均为1000,c是单调递增的;
                            2、进入循环之前,c[1]=a[0],保存了长度为1时的递增序列的最末的元素,且此时长度为1

                                的递增了序列只有一个,c[1]也是最小的;
                            3、进入循环之前,b[0]=1,此时以a[0]结尾的最长递增子序列的长度为1.
        maintenance:    1、若在第n次循环之前c是单调递增的,则第n次循环时,c的值只在第6行发生变化,而由

                                 c进入循环前单调递增及find函数的性质可知(见find的注释),

                                 此时c[j+1]>c[j]>=a[i]>c[j-1],所以把c[j]的值更新为a[i]后,c[j+1]>c[j]> c[j-1]的性质仍然成

                                 立,即c仍然是单调递增的;
                             2、循环中,c的值只在第6行发生变化,由c[j]>=a[i]可知,c[j]更新为a[i]后,c[j]的值只会变

                                 小不会变大,因为进入循环前c[j]的值是最小的,则循环中把c[j]更新为更小的a[i],当

                                 然此时c[j]的值仍是最小的;
                             3、循环中,b[i]的值在第7行发生了变化,因为有loop invariant的性质2,find函数返回值

                                 为j有:c[j-1]<a[i]<=c[j],这说明c[j-1]是小于a[i]的,且以c[j-1]结尾的递增子序列有最大的

                                 长度,即为j-1,把a[i]接在c[j-1]后可得到以a[i]结尾的最长递增子序列,长度为(j-1)+1=j;
        termination:        循环完后,i=n-1,b[0],b[1],...,b[n-1]的值均已求出,即以a[0],a[1],...,a[n-1]结尾的最长递

                               增子序列的长度均已求出,再通过第8行的循环,即求出了整个数组的最长递增子序列。

             

     

    仔细分析上面的代码可以发现,每次循环结束后,假设已经求出c[1],c[2],c[3],...,c[len]的值,则此时最长递增子序列的长度为 len,因此可以把上面的代码更加简化,即可以不需要数组b来辅助存储,第8行的循环也可以省略。
       

    1. #include <iostream>  
    2. using namespace std;  
    3. int find(int *a,int len,int n)//修改后的二分查找,若返回值为x,则a[x]>=n  
    4. {  
    5.     int left=0,right=len,mid=(left+right)/2;  
    6.     while(left<=right)  
    7.     {  
    8.        if(n>a[mid]) left=mid+1;  
    9.        else if(n<a[mid]) right=mid-1;  
    10.        else return mid;  
    11.        mid=(left+right)/2;  
    12.     }  
    13.     return left;  
    14. }  
    15.        
    16. int main(void)  
    17. {  
    18.     int n,a[100],c[100],i,j,len;//新开一变量len,用来储存每次循环结束后c中已经求出值的元素的最大下标  
    19.     while(cin>>n)  
    20.     {  
    21.         for(i=0;i<n;i++)  
    22.             cin>>a[i];  
    23.         b[0]=1;  
    24.         c[0]=-1;  
    25.         c[1]=a[0];  
    26.         len=1;//此时只有c[1]求出来,最长递增子序列的长度为1.  
    27.         for(i=1;i<n;i++)  
    28.         {  
    29.             j=find(c,len,a[i]);  
    30.             c[j]=a[i];  
    31.             if(j>len)//要更新len,另外补充一点:由二分查找可知j只可能比len大1  
    32.                 len=j;//更新len  
    33.         }  
    34.         cout<<len<<endl;  
    35.     }  
    36.     return 0;  
    37. }  

  • 相关阅读:
    【程序练习】——线性表有序合并
    【C】——const和volatile可以并用吗?
    【oneday_onepage】—— 日常用语
    【C】——使用creat()函数需要注意的事项
    【oneday_onepage】——美国主食吃什么
    【oneday_onepage】——Ten Changes To Make A Difference In Your Life
    【C】——dup/dup2用法
    【oneday_onepage】—— 美国人的仪容整洁与个人卫生
    成语辨析 april28
    具体行政行为 抽象行政行为
  • 原文地址:https://www.cnblogs.com/Zeroinger/p/5493922.html
Copyright © 2020-2023  润新知