Solution
最小割.
参考BZOJ 3144切糕
在那道题的基础上将建图方法稍作变形: 我们对格子进行黑白染色, 对于两个格子之和(le k)的限制, 就可以确定其中一个是白色格子, 一个是黑色格子. 我们让黑色格子和白色格子的点的顺序相反, 就可以表示限制了.
目前的代码还是WA的.
#include <cstdio>
#include <cctype>
#include <vector>
#include <deque>
#include <algorithm>
namespace Zeonfai
{
inline int getInt()
{
int a = 0, sgn = 1;
char c;
while(! isdigit(c = getchar())) if(c == '-') sgn *= -1;
while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
return a * sgn;
}
}
const int N = 50, M = 50, INF = (int)1e9;
int D[N][M], R[N][M];
struct graph
{
struct node;
struct edge
{
node *v; int cap; edge *op;
};
struct node
{
std::vector<edge*> edg;
int dep;
inline node()
{
edg.clear();
}
}nd[N][M][11], *S, *T;
inline graph()
{
S = new node; T = new node;
}
inline void addEdge(node *u, node *v, int cap)
{
edge *a = new edge, *b = new edge;
a->v = v; a->cap = cap; a->op = b;
b->v = u; b->cap = 0; b->op = a;
u->edg.push_back(a); v->edg.push_back(b);
}
int cnt;
void clear(node *u)
{
u->dep = - cnt;
for(auto edg : u->edg) if(edg->v->dep != -cnt) clear(edg->v);
}
inline int BFS()
{
++ cnt; clear(S); S->dep = 0;
static std::deque<node*> que; que.clear();
que.push_back(S);
for(; ! que.empty(); que.pop_front())
{
node *u = que.front();
for(auto edg : u->edg) if(edg->cap && edg->v->dep == - cnt) edg->v->dep = u->dep + 1, que.push_back(edg->v);
}
return T->dep != - cnt;
}
int DFS(node *u, int flw)
{
if(u == T) return flw;
int flowSum = 0;
for(auto edg : u->edg) if(edg->cap && edg->v->dep == u->dep + 1)
{
int currentFlow = DFS(edg->v, std::min(edg->cap, flw - flowSum));
flowSum += currentFlow;
edg->cap -= currentFlow; edg->op->cap += currentFlow;
if(flowSum == flw) return flowSum;
}
if(! flowSum) u->dep = -1;
return flowSum;
}
inline int dinic()
{
cnt = 0;
int res = 0;
while(BFS())
res += DFS(S, INF);
return res;
}
}G;
int main()
{
#ifndef ONLINE_JUDGE
freopen("matrix.in", "r", stdin);
freopen("matrix.out", "w", stdout);
#endif
using namespace Zeonfai;
int n = getInt(), m = getInt();
for(int i = 0; i < n - 1; ++ i) for(int j = 0; j < m; ++ j) D[i][j] = getInt();
for(int i = 0; i < n; ++ i) for(int j = 0; j < m - 1; ++ j) R[i][j] = getInt();
for(int i = 0; i < n; ++ i) for(int j = 0; j < m; ++ j)
{
if(i ^ j & 1)
{
G.addEdge(G.S, &G.nd[i][j][9], INF);
for(int k = 9; k >= 1; -- k) G.addEdge(&G.nd[i][j][k], &G.nd[i][j][k - 1], 10 - k);
G.addEdge(&G.nd[i][j][0], G.T, INF);
for(int k = 0; k <= 9; ++ k)
{
if(i + 1 < n && D[i][j] - k <= 10 && D[i][j] - k >= 1) G.addEdge(&G.nd[i + 1][j][D[i][j] - k], &G.nd[i][j][k], INF);
if(j + 1 < m && R[i][j] - k <= 10 && R[i][j] - k >= 1) G.addEdge(&G.nd[i][j + 1][R[i][j] - k], &G.nd[i][j][k], INF);
}
}
else
{
G.addEdge(G.S, &G.nd[i][j][1], INF);
for(int k = 1; k <= 9; ++ k) G.addEdge(&G.nd[i][j][k], &G.nd[i][j][k + 1], 10 - k);
G.addEdge(&G.nd[i][j][10], G.T, INF);
for(int k = 1; k <= 10; ++ k)
{
if(i + 1 < n && D[i][j] - k <= 9 && D[i][j] - k >= 0) G.addEdge(&G.nd[i][j][k], &G.nd[i + 1][j][D[i][j] - k], INF);
if(j + 1 < m && R[i][j] - k <= 9 && R[i][j] - k >= 0) G.addEdge(&G.nd[i][j][k], &G.nd[i][j + 1][R[i][j] - k], INF);
}
}
}
printf("%d
", n * m * 10 - G.dinic());
}