题目描述
如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:
操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z
操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和
操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z
操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和
输入输出格式
输入格式:
第一行包含4个正整数N、M、R、P,分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。
接下来一行包含N个非负整数,分别依次表示各个节点上初始的数值。
接下来N-1行每行包含两个整数x、y,表示点x和点y之间连有一条边(保证无环且连通)
接下来M行每行包含若干个正整数,每行表示一个操作,格式如下:
操作1: 1 x y z
操作2: 2 x y
操作3: 3 x z
操作4: 4 x
输出格式:
输出包含若干行,分别依次表示每个操作2或操作4所得的结果(对P取模)
输入输出样例
输入样例#1:
5 5 2 24 7 3 7 8 0 1 2 1 5 3 1 4 1 3 4 2 3 2 2 4 5 1 5 1 3 2 1 3
输出样例#1:
2 21
说明
时空限制:1s,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=1000,M<=1000
对于100%的数据:N<=100000,M<=100000
(其实,纯随机生成的树LCA+暴力是能过的,可是,你觉得可能是纯随机的么233)
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
inline int read()
{
int x = 0, flag = 1;
char c;
while(! isgraph(c = getchar()))
if(c == '-')
flag *= - 1;
while(isgraph(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
}
const int MAXN = (int)1e5 + (1 << 5);
int w[MAXN];
int top;
struct edge
{
int v, next;
}G[MAXN << 1];
int head[MAXN];
int n, m, root, MOD;
void add_edge(int u, int v)
{
G[top].v = v;
G[top].next = head[u];
head[u] = top ++;
}
struct node
{
int w, dep, fa, son, size, top, ID, last;
}a[MAXN];
void DFS1(int u, int fa)
{
a[u].dep = a[fa].dep + 1;
a[u].fa = fa;
a[u].size = 1;
a[u].son = - 1;
for(int i = head[u]; i != - 1; i = G[i].next)
{
int v = G[i].v;
if(v == fa)
continue;
DFS1(v, u);
a[u].size += a[v].size;
if(a[u].son == - 1 || a[v].size > a[a[u].size].size)
a[u].son = v;
}
}
int cnt;
void DFS2(int u, int top)
{
a[u].top = top;
a[u].ID = ++ cnt;
if(a[u].son == - 1)
{
a[u].last = a[u].ID;
return;
}
DFS2(a[u].son, top);
for(int i = head[u]; i != - 1; i = G[i].next)
if(G[i].v != a[u].son && G[i].v != a[u].fa)
DFS2(G[i].v, G[i].v);
a[u].last = cnt;
}
struct segmenttree
{
int sum, tag;
}T[MAXN << 2];
void modify(int u, int curL, int curR, int L, int R, int delta)
{
if(curL >= L && curR <= R)
{
T[u].tag += delta;
T[u].sum += delta * (curR - curL + 1);
return;
}
int mid = (curL + curR) >> 1;
if(L <= mid)
modify(u << 1, curL, mid, L, R, delta);
if(R > mid)
modify((u << 1) + 1, mid + 1, curR, L, R, delta);
T[u].sum += (min(curR, R) - max(curL, L) + 1) * delta;
}
void update(int u, int v, int delta)
{
while(a[u].top != a[v].top)
{
if(a[a[u].top].dep < a[a[v].top].dep)
swap(u, v);
modify(1, 1, n, a[a[u].top].ID, a[u].ID, delta);
u = a[a[u].top].fa;
}
if(a[u].ID < a[v].ID)
modify(1, 1, n, a[u].ID, a[v].ID, delta);
else
modify(1, 1, n, a[v].ID, a[u].ID, delta);
}
int query(int u, int curL, int curR, int L, int R)
{
if(curL >= L && curR <= R)
return T[u].sum;
int mid = (curL + curR) >> 1, ret = 0;
if(L <= mid)
ret += query(u << 1, curL, mid, L, R);
if(R > mid)
ret += query((u << 1) + 1, mid + 1, curR, L, R);
ret += (min(curR, R) - max(curL, L) + 1) * T[u].tag;
return ret;
}
int ask(int u, int v)
{
int ret = 0;
while(a[u].top != a[v].top)
{
if(a[a[u].top].dep < a[a[v].top].dep)
swap(u, v);
ret += query(1, 1, n, a[a[u].top].ID, a[u].ID);
u = a[a[u].top].fa;
}
if(a[u].ID < a[v].ID)
ret += query(1, 1, n, a[u].ID, a[v].ID);
else
ret += query(1, 1, n, a[v].ID, a[u].ID);
return ret;
}
void print(int x)
{
if(x < 0)
putchar('-');
if(x == 0)
putchar('0');
int top = 0, ans[36];
while(x)
ans[top ++] = x % 10, x /= 10;
for(; top; top --)
putchar(ans[top - 1] + '0');
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("L3384.in", "r", stdin);
freopen("L3384.out", "w", stdout);
#endif
n = read(), m = read(), root = read(), MOD = read();
for(int i = 1; i <= n; i ++)
a[i].w = read();
top = 0;
memset(head, - 1, sizeof(head));
for(int i = 1; i < n; i ++)
{
int u = read(), v = read();
add_edge(u, v);
add_edge(v, u);
}
a[root].dep = - 1;
DFS1(root, root);
cnt = 0;
DFS2(root, root);
memset(T, 0, sizeof(T));
for(int i = 1; i <= n; i ++)
modify(1, 1, n, a[i].ID, a[i].ID, a[i].w);
for(int i = 0; i < m; i ++)
{
int opt = read();
switch (opt)
{
case 1:
{
int u = read(), v = read(), delta = read();
update(u, v, delta);
break;
}
case 2:
{
int u = read(), v = read();
print(ask(u, v) % MOD);
putchar('
');
break;
}
case 3:
{
int u = read(), delta = read();
modify(1, 1, n, a[u].ID, a[u].last, delta);
break;
}
case 4:
{
int u = read();
print(query(1, 1, n, a[u].ID, a[u].last) % MOD);
putchar('
');
break;
}
}
}
}