Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899Sample Output:
Yes 2469135798
#include<iostream> #include<string> #include <sstream> using namespace std; int sort(int a[],int n){ int temp; for(int i=0;i<n;i++){ for(int j=i;j<n;j++){ if(a[i]>a[j]){ temp=a[i]; a[i]=a[j]; a[j]=temp; } } } return 0; } int main(){ string num; stringstream ss; int size,j=0; cin>>num; size=num.size(); int *a=new int[size]; int *b=new int[size+1]; int *doubleNum=new int[size+1]; for(int i=0;i<size+1;i++){ doubleNum[i]=0; b[i]=0; } for(int i=0;i<size;i++){ a[i]=num[i]-48; } for(int i=size;i>0;i--){ if(a[i-1]+a[i-1]>=10){ doubleNum[i]+=(a[i-1]+a[i-1])%10; doubleNum[i-1]+=1; }else{ doubleNum[i]+=a[i-1]+a[i-1]; } } if(doubleNum[0]==0){ for(int i=0;i<size;i++){ b[i+1]=doubleNum[i+1]; } sort(doubleNum,size+1); sort(a,size); for(int i=0;i<size;i++){ if(a[i]==doubleNum[i+1]){ j++; } } if(j==size){ cout<<"Yes"<<endl; for(int i=0;i<size;i++){ cout<<b[i+1]; } }else{ cout<<"No"<<endl; for(int i=0;i<size;i++){ cout<<b[i+1]; } } }else{ cout<<"No"<<endl; for(int i=0;i<size+1;i++){ cout<<doubleNum[i]; } } }
测试结果