• poj 2392 Space Elevator


    Space Elevator
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 12817   Accepted: 6092

    Description

    The cows are going to space! They plan to achieve orbit by building a sort of space elevator: a giant tower of blocks. They have K (1 <= K <= 400) different types of blocks with which to build the tower. Each block of type i has height h_i (1 <= h_i <= 100) and is available in quantity c_i (1 <= c_i <= 10). Due to possible damage caused by cosmic rays, no part of a block of type i can exceed a maximum altitude a_i (1 <= a_i <= 40000). 

    Help the cows build the tallest space elevator possible by stacking blocks on top of each other according to the rules.

    Input

    * Line 1: A single integer, K 

    * Lines 2..K+1: Each line contains three space-separated integers: h_i, a_i, and c_i. Line i+1 describes block type i.

    Output

    * Line 1: A single integer H, the maximum height of a tower that can be built

    Sample Input

    3
    7 40 3
    5 23 8
    2 52 6

    Sample Output

    48

    Hint

    OUTPUT DETAILS: 

    From the bottom: 3 blocks of type 2, below 3 of type 1, below 6 of type 3. Stacking 4 blocks of type 2 and 3 of type 1 is not legal, since the top of the last type 1 block would exceed height 40.

    Source

     
    题意:
    用物块堆塔,每一个物块都有不同的高度以及数量,并且每一种物块能够堆放的最大高度也是有限制的。求利用这些物块能堆的最高高度。
    思路:完全背包,可以利用单调队列.因为不同类型的物块能堆放的最大高度不同,最大高度限制越低的物块应当越早堆放越好,故一开始要以最大高度限制对不同种类的物块从小到大排序。
    AC代码:
    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    using namespace std;
    #define N_MAX 400000+20
    struct tower {
        int w, v, m, a;//m是数量,a是当前积木能堆积的最高高度
        tower() {}
        bool operator < (const tower &b) const{
            return a < b.a;
        }
    }T[400+20];
    int n;
    int dp[N_MAX];
    int deq[N_MAX],deqv[N_MAX];
    
    void solve() {
        //memset(dp, 0, sizeof(dp)); memset(deq, 0, sizeof(deq)); memset(deqv,0,sizeof(deqv));
        for (int i = 0; i < n;i++) {
            for (int a = 0; a < T[i].w;a++) {
                int s = 0, t = 0;
                for (int j = 0; j*T[i].w + a <= T[i].a; j++) {
                    int val = dp[j*T[i].w + a] - j*T[i].v;
                    while (s < t&&deqv[t - 1] <= val)t--;
                    deq[t] = j;
                    deqv[t++] = val;
                    dp[j*T[i].w + a] = deqv[s] + j*T[i].v;
                    if (deq[s] == j - T[i].m) s++;
                }
            }
      }
    }
    int main() {
            scanf("%d",&n);
            for (int i = 0; i < n;i++) {
                scanf("%d%d%d",&T[i].w,&T[i].a,&T[i].m);
                T[i].v =T[i].w;
            }
            sort(T,T+n);
            solve();
            int max_height = *max_element(dp,dp+N_MAX-19);;
            printf("%d
    ",max_height);
        
        return 0;
    }
  • 相关阅读:
    【ybtoj】【kmp】公共子串
    【ybtoj】【Hash】最大分离度
    【哈希表模板(链前版本)】【ybtoj】【特殊序列】
    【ybtoj】【单调队列】出题方案
    【ybtoj】【单调队列】写博客
    【ybtoj】【线段树】魔法传输
    【ybtoj】【单调队列入门专题】
    OS:3-存储管理
    OS:2-处理器管理
    OS:1-操作系统概观
  • 原文地址:https://www.cnblogs.com/ZefengYao/p/8992021.html
Copyright © 2020-2023  润新知