1053. Path of Equal Weight (30)
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Figure 1
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bifor i=1, ... k, and Ak+1 > Bk+1.
Sample Input:20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2
题意:寻找所有节点键值的和为指定值的路径,并且按照一定规则对路径排序后输出。
思路:dfs
AC代码:
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include<string> #include<set> #include<queue> #include<map> using namespace std; #define INF 0x3f3f3f #define N_MAX 100+5 typedef long long ll; int n, m, sum; struct Node { int key,id; Node() {} Node(int id,int key):id(id),key(key) {} }node[N_MAX]; vector<Node>G[N_MAX]; int road[N_MAX]; vector<vector<int> >r; vector<int>tmp; void dfs(int x,int step,int add) { road[step] = node[x].key; if (G[x].size() == 0 &&add==sum) {//符合条件 tmp.clear(); for (int i = 0; i <=step; i++)tmp.push_back(road[i]); r.push_back(tmp); return; } for (int i = 0; i < G[x].size();i++) { Node p = G[x][i]; dfs(p.id, step + 1, p.key + add); } } bool cmp(vector<int>a,vector<int>b ) { int i = 0; while (a[i] == b[i]&&i<a.size()-1&&i<b.size()-1)i++; return a[i] > b[i]; } int main() { while (cin>>n>>m>>sum) { for (int i = 0; i < n; i++) { int a; cin >> a; node[i] = Node(i, a); } for (int i = 0; i < m;i++) { int from, k; cin >> from >> k; while (k--) { int to; cin >> to; G[from].push_back(node[to]); } } dfs(0, 0, node[0].key); sort(r.begin(), r.end(), cmp); for (int i = 0; i < r.size();i++) { for (int j = 0; j < r[i].size();j++) { printf("%d%c",r[i][j],j+1==r[i].size()?' ':' '); } } } return 0; }