• poj 1274 The Perfect Stall


    The Perfect Stall
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 25839   Accepted: 11483

    Description

    Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall. 
    Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

    Input

    The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

    Output

    For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

    Sample Input

    5 5
    2 2 5
    3 2 3 4
    2 1 5
    3 1 2 5
    1 2 
    

    Sample Output

    4

     思路:二分图匹配裸模板题。

    AC代码:

    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<vector>
    #include<cstring>
    #include<string>
    using namespace std;
    #define INF 0x3f3f3f3f
    const int N_MAX = 600 + 5;
    int V;//点的个数
    vector<int>G[N_MAX];
    int match[N_MAX];
    bool used[N_MAX];
    void add_edge(int u,int v) {
        G[u].push_back(v);
        G[v].push_back(u);
    }
    
    bool dfs(int v) {
        used[v] = true;
        for (int i = 0; i < G[v].size();i++) {
            int u = G[v][i],w=match[u];
            if (w < 0 || !used[w] && dfs(w)) {
                match[v] = u;
                match[u] = v;
                return true;
            }
        }
        return false;
    }
    
    int bipartite_matching() {
        int res = 0;
        memset(match,-1,sizeof(match));
        for (int v = 0; v < V;v++) {
            if (match[v] < 0) {
                memset(used,0,sizeof(used));
                if (dfs(v))
                    res++;
            }
        }
        return res;
    }
    
    int n, m;
    int main() {
        while (scanf("%d%d",&n,&m)!=EOF) {
            //0~n-1:牛
            //n~n+m-1:棚
            V = n + m;
            for (int i = 0; i < n;i++) {
                int k;
                scanf("%d", &k);
                for (int j = 0; j < k;j++) {
                    int a;
                    scanf("%d",&a);
                    add_edge(i,a-1+n);
                }
            }
            printf("%d
    ",bipartite_matching());
            for (int i = 0; i < V;i++) {
                G[i].clear();
            }
        }
        return 0;
    }
  • 相关阅读:
    jquery easyui-datagrid手动增加删除重置行
    jsp中一行多条数据情况
    JQuery操作下拉框
    解决juqery easyui combobox只能选择问题
    oracle中WMSYS.WM_CONCAT函数的版本差异
    oracle wm_concat(column)函数的使用
    Javascript九大排序算法详解
    C#和VB新版本的最新特性列表
    Oracle中如何区别用户和模式
    远程控制数据库实用SQL重启功能
  • 原文地址:https://www.cnblogs.com/ZefengYao/p/7214363.html
Copyright © 2020-2023  润新知