• poj 3264 Balanced Lineup


                                                                                                                                                                   Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 51876   Accepted: 24319
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0
    题意:给定一串长度为N的数列,现在给定子序列[a,b],要查询连续的子数列[a,b]区间中中的最大值和最小值的差。
    思路:典型的线段树问题,对于线段树中每个节点k,维护两个值,即维护该节点对应的区间[l,r)中的最大值和最小值,最后输出其差即可。
    AC代码:
    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<algorithm>
    #include<vector>
    using namespace std;
    const int ST_SIZE = (1 << 17) - 1,N_MAX=50000+2;
    int N, Q;
    int height[N_MAX];
    int dat_large[ST_SIZE], dat_small[ST_SIZE];
    void init(int k,int l,int r) {//节点k,对应区间[l,r)
        if (r - l == 1) {
           dat_large[k] = dat_small[k] = height[l];//!!!!!!!!!!
     }
        else {
            int left = 2 * k + 1;
            int right = 2 * k + 2;
            init(left,l,(l+r)/2);
            init(right, (l + r) / 2, r);
            dat_large[k] = max(dat_large[left],dat_large[right]);
            dat_small[k] = min(dat_small[left],dat_small[right]);
        }
    }
    
    pair<int,int> query(int k,int l,int r,int a,int b) {//节点k,对应区间[l,r),查找区间[a,b),用于找区间[a,b)的最大最小值
        //pair<int,int>find;//分别存放最大和最小值
        if (b <= l || a >= r) {//无交集
            return make_pair(0,INT_MAX);
        }
        else if (a <= l&& b>= r) {//完全包含区间!!!!!!!!!!!!!!!!!!
            return make_pair(dat_large[k], dat_small[k]);
         }
        else {
            pair<int, int>find1 = query(2*k+1,l,(l+r)/2,a,b);
            pair<int, int>find2 = query(2 * k + 2, (l + r) / 2, r, a, b);
            int large = max(find1.first,find2.first);
            int small = min(find1.second,find2.second);
            return make_pair(large, small);
        }
    }
    
    int main() {
        scanf("%d%d",&N,&Q);
        for (int i = 0; i < N;i++) {
            scanf("%d",&height[i]);
        }
        init(0,0,N);
        for (int i = 0; i < Q; i++) {
            int a, b;
            scanf("%d%d",&a,&b);
            a--, b--;
            pair<int, int>find = query(0,0,N,a,b+1);
            printf("%d
    ",find.first-find.second);
        }
        return 0;
    }
  • 相关阅读:
    Linux常见问题解决
    (转)CoreDNS:Kubernetes内部域名解析原理、弊端及优化方式
    (转)Go sync.WaitGroup的用法
    (转)5个维度对 Kubernetes 集群优化及压测方案
    使用 Alpine 作为基础镜像时可能会遇到的常见问题的解决方法
    提前预防K8s集群资源不足的处理方式配置
    docker runc升级
    Nginx常见问题解决
    DNS泛域名解析应用(nip.io)
    使用Velero备份Kubernetes集群
  • 原文地址:https://www.cnblogs.com/ZefengYao/p/6690944.html
Copyright © 2020-2023  润新知