• poj 2566 Bound Found


                                                                                                                                                            Bound Found
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 3391   Accepted: 1042   Special Judge

    Description

    Signals of most probably extra-terrestrial origin have been received and digitalized by The Aeronautic and Space Administration (that must be going through a defiant phase: "But I want to use feet, not meters!"). Each signal seems to come in two parts: a sequence of n integer values and a non-negative integer t. We'll not go into details, but researchers found out that a signal encodes two integer values. These can be found as the lower and upper bound of a subrange of the sequence whose absolute value of its sum is closest to t.

    You are given the sequence of n integers and the non-negative target t. You are to find a non-empty range of the sequence (i.e. a continuous subsequence) and output its lower index l and its upper index u. The absolute value of the sum of the values of the sequence from the l-th to the u-th element (inclusive) must be at least as close to t as the absolute value of the sum of any other non-empty range.

    Input

    The input file contains several test cases. Each test case starts with two numbers n and k. Input is terminated by n=k=0. Otherwise, 1<=n<=100000 and there follow n integers with absolute values <=10000 which constitute the sequence. Then follow k queries for this sequence. Each query is a target t with 0<=t<=1000000000.

    Output

    For each query output 3 numbers on a line: some closest absolute sum and the lower and upper indices of some range where this absolute sum is achieved. Possible indices start with 1 and go up to n.

    Sample Input

    5 1
    -10 -5 0 5 10
    3
    10 2
    -9 8 -7 6 -5 4 -3 2 -1 0
    5 11
    15 2
    -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
    15 100
    0 0
    

    Sample Output

    5 4 4
    5 2 8
    9 1 1
    15 1 15
    15 1 15

    题意:给定一条长度为N的数列,以及值t,现在需要从数列中找到一段连续的子序列,使得该子序列中元素的总和的绝对值与t值最为接近。
    思路:我们可以先计算从数列第一个元素开始一直到第i个元素为止的总和,不妨用accumulation[i]来记录,那么任意的子序列[i,j]的总和sum可以计算为accumulation[j]-accumulation[i-1].
    现在可以将accumulation数组进行从小到大排序,并定义left,right为排好序数组的所要截取的子序列的左右边界,并且sum=accumulation[right]-accumulation[left].那么随着right的增大,
    sum也会增大,随着left的增大,sum会减小,此时就可使用尺取法,不断改变左右边界,找到最接近t的sum值。
    AC代码:
    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<algorithm>
    #include<numeric>
    #include<cmath>
    using namespace std;
    const int N_MAX = 100000+4;
    int n, k,t, a[N_MAX];
    pair<int, int>accumulation[N_MAX];//sum<->index
    int get_sum(const int&t,const int &l,const int &r,int &from,int &to,int &result) {
        if (r <= l)return INT_MIN;//产生错误,返回!!!!!!
        int sum = accumulation[r].first - accumulation[l].first;
        if (abs(t-sum)<abs(t-result)) {
            result = sum;
            from = min(accumulation[r].second,accumulation[l].second);
            to = max(accumulation[r].second, accumulation[l].second);
        }
        return sum;
    }
    
    int main() {
        while (scanf("%d%d",&n,&k)&&n) {
            for (int i = 0; i < n;i++) {
                scanf("%d",&a[i]);
            }
            accumulation[0] = make_pair(0, 0);
            for (int i = 0; i < n; i++) {
                accumulation[i + 1] = make_pair(accumulation[i].first + a[i],i+1);//防止下标搞错
            }
            sort(accumulation, accumulation + n+1);//对累积和进行排序!!!!!
            while (k--) {
                scanf("%d",&t);
                int l = 0, r = 0,sum=INT_MIN,from,to,result=INT_MAX;//!!!!!
                for (;;) {
                         while(r<n&&sum<t) { 
                            sum=get_sum(t,l,++r,from,to,result);//移动右端点!!!!
                        }
                         if (sum < t) {
                             break;
                         }
                         sum = get_sum(t,++l,r,from,to,result);//移动左端点!!!!
                    }
                printf("%d %d %d
    ",result,from+1,to);////!!!!
            }
        }
        return 0;
    }
  • 相关阅读:
    1014. 福尔摩斯的约会
    1009. 说反话
    1002. 写出这个数
    1031. 查验身份证
    1021. 个位数统计
    1006. 换个格式输出整数
    1058. A+B in Hogwarts
    1027. Colors in Mars
    1019. General Palindromic Number
    Windows 新装进阶操作指南
  • 原文地址:https://www.cnblogs.com/ZefengYao/p/6474475.html
Copyright © 2020-2023  润新知