题目背景
原创:b2019dy
gcd是一个热爱游戏的人
题目描述
gcd最近在玩一个有趣的游戏
我们把这个游戏抽象成一张图,图上有n个点,我们需要寻找总计m件宝物,它们分布在图上,对于每件宝物而言,将会有一个前置集合S.只有当取得所有前置宝物时,才能获得该宝物。
gcd拥有一件神器,这件神器具有传送功能,它可以使用k次,可以传送到一个任意节点。
对于游戏而言,肯定会有额外的成就,这些成就会奖励一定的传送次数,成就的达成是满足集合S的一瞬间。
现在gcd想知道能最快通关的方法
输入输出格式
输入格式:
第一行:n,m,k
第二行:s表示成就的数量
以下s行,num表示需求多少个宝物,然后num个数,为所需宝物编号
第s+3行:a1,a2,⋯as表示成就的奖励次数
第s+4行:mp1,p2,⋯pm表示宝物的位置
第s+5行:e表示边的总数
以下e行:每行三个数x,y,z表示x与y之间有无向边连接,边权为z.
以下m行:每行一个数num表示第i个宝物的前置要求数,之后num个数,表示所需宝物编号
最后一行:st表示起点
输出格式:
最少时间
输入输出样例
输入样例#1: 复制
3 2 0
1
1 1
1
2 3
3
1 2 20
1 3 20
3 2 1
0
0
1
输出样例#1: 复制
20
输入样例#2: 复制
3 2 0
1
1 1
1
2 3
3
1 2 1
1 3 20
3 2 20
1 2
0
1
输出样例#2: 复制
40
说明
对于20%的数据,s=0
对于100%的数据:n≤200,m≤12,k≤4,s≤8,e≤20000
奖励次数总和不超过8
数据保证每两个宝物的位置不相同
可能有重边
数据保证有解
就是状压啦
想到三维状态(f[i][j][k])表示那宝藏状态为(i)时,传送了(j)次,现在在位置(k)时的最少步数
预处理出每个合法状态和每个合法状态可以由那些状态转移过来
似乎还是很难用dp状态转移,用记忆化搜索会比较好写
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
#define M 1000001
#define max(a,b) ((a)>(b)? (a):(b))
#define min(a,b) ((a)<(b)? (a):(b))
using namespace std;
int i,m,n,j,k,f[4099][13][13],ss,t,s[20],g,gi[20],p[10001],e,d[201][202],x,y,z,l,q[M],st,w[100001],bl[100001],r[4500][4500],ans=0x3f3f3f3f;
int dp(int now,int bs,int t)
{
if(now==(1<<m)-1) ans=min(ans,f[now][bs][t]);
for(int i=1;i<=r[bl[now]][0];i++)
{
int y=0,x=0;
if(bs>=k) for(int j=1;j<=ss;j++) if((s[j] ^now)==now-s[j]) y+=gi[j];
int z=r[bl[now]][i]^now;
while(z) z>>=1,x+=1;
if(y+k>bs) if(f[r[bl[now]][i]][bs+1][x]>f[now][bs][t])
{
f[r[bl[now]][i]][bs+1][x]=f[now][bs][t];
dp(r[bl[now]][i],bs+1,x);
}
if(f[r[bl[now]][i]][bs][x]>f[now][bs][t]+d[p[t]][p[x]])
{
f[r[bl[now]][i]][bs][x]=f[now][bs][t]+d[p[t]][p[x]];
dp(r[bl[now]][i],bs,x);
}
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&k,&ss);
for(i=1;i<=ss;i++)
{
scanf("%d",&t);
for(t;t;t--)
{
scanf("%d",&g);
s[i]|=1<<(g-1);
}
}
for(i=1;i<=ss;i++) scanf("%d",&gi[i]);
for(i=1;i<=m;i++) scanf("%d",&p[i]);
scanf("%d",&e);
memset(d,0x3f,sizeof(d));
for(i=1;i<=e;i++)
{
scanf("%d%d%d",&x,&y,&z);
d[y][x]=d[x][y]=min(d[x][y],z);
}
for(l=1;l<=n;l++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(i!=j) d[j][i]=d[i][j]=min(d[i][l]+d[l][j],d[i][j]);
else d[i][j]=0;
for(i=1;i<=m;i++)
{
scanf("%d",&t);
for(j=1;j<=t;j++)
{
scanf("%d",&g);
q[i]|=1<<(g-1);
}
}
scanf("%d",&st);
for(i=1;i<1<<m;i++)
{
g=i; int b=1;
while(g)
{
int h=g & -g, x=0;
g-=h;
while(h) x+=1, h>>=1;
if(i-q[x]!=(i^q[x])) b=0;
g-=h;
}
if(b) w[++w[0]]=i, bl[i]=w[0];
}
for(i=1;i<=w[0];i++)
{
t=w[i];
while(t)
{
g=t & -t;
if(bl[w[i]-g]) r[bl[w[i]-g]][++r[bl[w[i]-g]][0]]=w[i];
t-=g;
}
}
memset(f,0x3f,sizeof(f));
t=1<<(st-1), y=0;
for(j=1;j<=ss;j++) if(s[j]==t) y+=gi[j];
for(i=0;i<m;i++)
{
t=1<<i, y=0;
if(q[i+1]) continue;
f[t][0][i+1]=d[st][p[i+1]];
dp(t,0,i+1);
if(k+y>=1)
{
f[t][1][i+1]=0;
dp(t,1,i+1);
}
}
printf("%d",ans);
}