// 面试题36:二叉搜索树与双向链表 // 题目:输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求 // 不能创建任何新的结点,只能调整树中结点指针的指向。 #include <cstdio> #include "BinaryTree.h" void ConvertNode(BinaryTreeNode* pNode, BinaryTreeNode** pLastNodeInList); BinaryTreeNode* Convert(BinaryTreeNode* pRootOfTree) { BinaryTreeNode* pLastNodeInList = nullptr; //链表中最后一位 ConvertNode(pRootOfTree, &pLastNodeInList); //核心函数 //从链表尾返回链表头, BinaryTreeNode* pHeadOfList = pLastNodeInList; while (pHeadOfList != nullptr && pHeadOfList->m_pLeft != nullptr) pHeadOfList = pHeadOfList->m_pLeft; return pHeadOfList; } //函数需要手推一遍,在纸上画图 void ConvertNode(BinaryTreeNode* pNode, BinaryTreeNode** pLastNodeInList) { if (pNode == nullptr) return; BinaryTreeNode* pCurrent = pNode; //当前节点 if (pCurrent->m_pLeft != nullptr) //中序遍历 ConvertNode(pCurrent->m_pLeft, pLastNodeInList); //当前节点和链表中最后一个节点(上一个处理完的节点)商业互连 pCurrent->m_pLeft = *pLastNodeInList; if (*pLastNodeInList != nullptr) //此时考虑链表为空 (*pLastNodeInList)->m_pRight = pCurrent; *pLastNodeInList = pCurrent; //更新链表中最后一个节点 if (pCurrent->m_pRight != nullptr) //处理右子节点 ConvertNode(pCurrent->m_pRight, pLastNodeInList); }
// ====================测试代码==================== void PrintDoubleLinkedList(BinaryTreeNode* pHeadOfList) { BinaryTreeNode* pNode = pHeadOfList; printf("The nodes from left to right are: "); while (pNode != nullptr) { printf("%d ", pNode->m_nValue); if (pNode->m_pRight == nullptr) break; pNode = pNode->m_pRight; } printf(" The nodes from right to left are: "); while (pNode != nullptr) { printf("%d ", pNode->m_nValue); if (pNode->m_pLeft == nullptr) break; pNode = pNode->m_pLeft; } printf(" "); } void DestroyList(BinaryTreeNode* pHeadOfList) { BinaryTreeNode* pNode = pHeadOfList; while (pNode != nullptr) { BinaryTreeNode* pNext = pNode->m_pRight; delete pNode; pNode = pNext; } } void Test(const char* testName, BinaryTreeNode* pRootOfTree) { if (testName != nullptr) printf("%s begins: ", testName); PrintTree(pRootOfTree); BinaryTreeNode* pHeadOfList = Convert(pRootOfTree); PrintDoubleLinkedList(pHeadOfList); } // 10 // / // 6 14 // / / // 4 8 12 16 void Test1() { BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10); BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6); BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14); BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4); BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8); BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12); BinaryTreeNode* pNode16 = CreateBinaryTreeNode(16); ConnectTreeNodes(pNode10, pNode6, pNode14); ConnectTreeNodes(pNode6, pNode4, pNode8); ConnectTreeNodes(pNode14, pNode12, pNode16); Test("Test1", pNode10); DestroyList(pNode4); } // 5 // / // 4 // / // 3 // / // 2 // / // 1 void Test2() { BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5); BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4); BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3); BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2); BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1); ConnectTreeNodes(pNode5, pNode4, nullptr); ConnectTreeNodes(pNode4, pNode3, nullptr); ConnectTreeNodes(pNode3, pNode2, nullptr); ConnectTreeNodes(pNode2, pNode1, nullptr); Test("Test2", pNode5); DestroyList(pNode1); } // 1 // // 2 // // 3 // // 4 // // 5 void Test3() { BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1); BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2); BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3); BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4); BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5); ConnectTreeNodes(pNode1, nullptr, pNode2); ConnectTreeNodes(pNode2, nullptr, pNode3); ConnectTreeNodes(pNode3, nullptr, pNode4); ConnectTreeNodes(pNode4, nullptr, pNode5); Test("Test3", pNode1); DestroyList(pNode1); } // 树中只有1个结点 void Test4() { BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1); Test("Test4", pNode1); DestroyList(pNode1); } // 树中没有结点 void Test5() { Test("Test5", nullptr); } int main(int argc, char* argv[]) { Test1(); Test2(); Test3(); Test4(); Test5(); return 0; }
分析:此题需要画图手推一遍过程才可以理解,分为左右子树分析。
/* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) { } };*/ class Solution { public: TreeNode* Convert(TreeNode* pRootOfTree) { TreeNode* pLastNodeInList = nullptr; ConvertNode(pRootOfTree, &pLastNodeInList); TreeNode* pListOfHead = pLastNodeInList; while (pListOfHead != nullptr && pListOfHead->left != nullptr) pListOfHead = pListOfHead->left; return pListOfHead; } void ConvertNode(TreeNode* pNode, TreeNode** pLastNodeInList) { if (pNode == nullptr) return; TreeNode* pCurrent = pNode; if (pCurrent->left != nullptr) ConvertNode(pCurrent->left, pLastNodeInList); pCurrent->left = *pLastNodeInList; if (*pLastNodeInList != nullptr) (*pLastNodeInList)->right = pCurrent; *pLastNodeInList = pCurrent; if (pCurrent->right != nullptr) ConvertNode(pCurrent->right, pLastNodeInList); } };