• 《剑指offer》第二十八题:对称的二叉树


    // 面试题28:对称的二叉树
    // 题目:请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和
    // 它的镜像一样,那么它是对称的。
    
    #include <cstdio>
    #include "BinaryTree.h"
    
    bool isSymmetrical(BinaryTreeNode* pRoot1, BinaryTreeNode* pRoot2);
    
    bool isSymmetrical(BinaryTreeNode* pRoot)
    {
        return isSymmetrical(pRoot, pRoot); //函数重载
    }
    
    bool isSymmetrical(BinaryTreeNode* pRoot1, BinaryTreeNode* pRoot2)
    {
        if (pRoot1 == nullptr && pRoot2 == nullptr) //如果子节点都为空
            return true;
    
        if (pRoot1 == nullptr || pRoot2 == nullptr) //如果一个子节点为空
            return false;
    
        if (pRoot1->m_nValue != pRoot2->m_nValue) //两个节点不相等
            return false;
    
        return isSymmetrical(pRoot1->m_pLeft, pRoot2->m_pRight)
            && isSymmetrical(pRoot1->m_pRight, pRoot2->m_pLeft);
    }
    // ====================测试代码====================
    void Test(const char* testName, BinaryTreeNode* pRoot, bool expected)
    {
        if (testName != nullptr)
            printf("%s begins: ", testName);
    
        if (isSymmetrical(pRoot) == expected)
            printf("Passed.
    ");
        else
            printf("FAILED.
    ");
    }
    
    //            8
    //        6      6
    //       5 7    7 5
    void Test1()
    {
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode61 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode62 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode51 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode71 = CreateBinaryTreeNode(7);
        BinaryTreeNode* pNode72 = CreateBinaryTreeNode(7);
        BinaryTreeNode* pNode52 = CreateBinaryTreeNode(5);
    
        ConnectTreeNodes(pNode8, pNode61, pNode62);
        ConnectTreeNodes(pNode61, pNode51, pNode71);
        ConnectTreeNodes(pNode62, pNode72, pNode52);
    
        Test("Test1", pNode8, true);
    
        DestroyTree(pNode8);
    }
    
    //            8
    //        6      9
    //       5 7    7 5
    void Test2()
    {
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode61 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode9 = CreateBinaryTreeNode(9);
        BinaryTreeNode* pNode51 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode71 = CreateBinaryTreeNode(7);
        BinaryTreeNode* pNode72 = CreateBinaryTreeNode(7);
        BinaryTreeNode* pNode52 = CreateBinaryTreeNode(5);
    
        ConnectTreeNodes(pNode8, pNode61, pNode9);
        ConnectTreeNodes(pNode61, pNode51, pNode71);
        ConnectTreeNodes(pNode9, pNode72, pNode52);
    
        Test("Test2", pNode8, false);
    
        DestroyTree(pNode8);
    }
    
    //            8
    //        6      6
    //       5 7    7
    void Test3()
    {
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode61 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode62 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode51 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode71 = CreateBinaryTreeNode(7);
        BinaryTreeNode* pNode72 = CreateBinaryTreeNode(7);
    
        ConnectTreeNodes(pNode8, pNode61, pNode62);
        ConnectTreeNodes(pNode61, pNode51, pNode71);
        ConnectTreeNodes(pNode62, pNode72, nullptr);
    
        Test("Test3", pNode8, false);
    
        DestroyTree(pNode8);
    }
    
    //               5
    //              / 
    //             3   3
    //            /     
    //           4       4
    //          /         
    //         2           2
    //        /             
    //       1               1
    void Test4()
    {
        BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode31 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode32 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode41 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode42 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode21 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode22 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode11 = CreateBinaryTreeNode(1);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(1);
    
        ConnectTreeNodes(pNode5, pNode31, pNode32);
        ConnectTreeNodes(pNode31, pNode41, nullptr);
        ConnectTreeNodes(pNode32, nullptr, pNode42);
        ConnectTreeNodes(pNode41, pNode21, nullptr);
        ConnectTreeNodes(pNode42, nullptr, pNode22);
        ConnectTreeNodes(pNode21, pNode11, nullptr);
        ConnectTreeNodes(pNode22, nullptr, pNode12);
    
        Test("Test4", pNode5, true);
    
        DestroyTree(pNode5);
    }
    
    
    //               5
    //              / 
    //             3   3
    //            /     
    //           4       4
    //          /         
    //         6           2
    //        /             
    //       1               1
    void Test5()
    {
        BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode31 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode32 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode41 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode42 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode22 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode11 = CreateBinaryTreeNode(1);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(1);
    
        ConnectTreeNodes(pNode5, pNode31, pNode32);
        ConnectTreeNodes(pNode31, pNode41, nullptr);
        ConnectTreeNodes(pNode32, nullptr, pNode42);
        ConnectTreeNodes(pNode41, pNode6, nullptr);
        ConnectTreeNodes(pNode42, nullptr, pNode22);
        ConnectTreeNodes(pNode6, pNode11, nullptr);
        ConnectTreeNodes(pNode22, nullptr, pNode12);
    
        Test("Test5", pNode5, false);
    
        DestroyTree(pNode5);
    }
    
    //               5
    //              / 
    //             3   3
    //            /     
    //           4       4
    //          /         
    //         2           2
    //                      
    //                       1
    void Test6()
    {
        BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode31 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode32 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode41 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode42 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode21 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode22 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(1);
    
        ConnectTreeNodes(pNode5, pNode31, pNode32);
        ConnectTreeNodes(pNode31, pNode41, nullptr);
        ConnectTreeNodes(pNode32, nullptr, pNode42);
        ConnectTreeNodes(pNode41, pNode21, nullptr);
        ConnectTreeNodes(pNode42, nullptr, pNode22);
        ConnectTreeNodes(pNode21, nullptr, nullptr);
        ConnectTreeNodes(pNode22, nullptr, pNode12);
    
        Test("Test6", pNode5, false);
    
        DestroyTree(pNode5);
    }
    
    // 只有一个结点
    void Test7()
    {
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
        Test("Test7", pNode1, true);
    
        DestroyTree(pNode1);
    }
    
    // 没有结点
    void Test8()
    {
        Test("Test8", nullptr, true);
    }
    
    // 所有结点都有相同的值,树对称
    //               5
    //              / 
    //             5   5
    //            /     
    //           5       5
    //          /         
    //         5           5
    void Test9()
    {
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode21 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode22 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode31 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode32 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode41 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode42 = CreateBinaryTreeNode(5);
    
        ConnectTreeNodes(pNode1, pNode21, pNode22);
        ConnectTreeNodes(pNode21, pNode31, nullptr);
        ConnectTreeNodes(pNode22, nullptr, pNode32);
        ConnectTreeNodes(pNode31, pNode41, nullptr);
        ConnectTreeNodes(pNode32, nullptr, pNode42);
        ConnectTreeNodes(pNode41, nullptr, nullptr);
        ConnectTreeNodes(pNode42, nullptr, nullptr);
    
        Test("Test9", pNode1, true);
    
        DestroyTree(pNode1);
    }
    
    // 所有结点都有相同的值,树不对称
    //               5
    //              / 
    //             5   5
    //            /     
    //           5       5
    //          /       /
    //         5       5
    void Test10()
    {
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode21 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode22 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode31 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode32 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode41 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode42 = CreateBinaryTreeNode(5);
    
        ConnectTreeNodes(pNode1, pNode21, pNode22);
        ConnectTreeNodes(pNode21, pNode31, nullptr);
        ConnectTreeNodes(pNode22, nullptr, pNode32);
        ConnectTreeNodes(pNode31, pNode41, nullptr);
        ConnectTreeNodes(pNode32, pNode42, nullptr);
        ConnectTreeNodes(pNode41, nullptr, nullptr);
        ConnectTreeNodes(pNode42, nullptr, nullptr);
    
        Test("Test10", pNode1, false);
    
        DestroyTree(pNode1);
    }
    
    void main(int argc, char* argv[])
    {
        Test1();
        Test2();
        Test3();
        Test4();
        Test5();
        Test6();
        Test7();
        Test8();
        Test9();
        Test10();
    }
    测试代码

    分析:妙啊!

    /*
    struct TreeNode {
        int val;
        struct TreeNode *left;
        struct TreeNode *right;
        TreeNode(int x) :
                val(x), left(NULL), right(NULL) {
        }
    };
    */
    class Solution {
    public:
        bool isSymmetrical(TreeNode* pRoot)
        {
            return isSymmetrical(pRoot, pRoot);
        }
        bool isSymmetrical(TreeNode* pRoot1, TreeNode* pRoot2)
        {
            if (pRoot1 == nullptr && pRoot2 == nullptr)
                return true;
            
            if (pRoot1 == nullptr || pRoot2 == nullptr)
                return false;
            
            if (pRoot1->val != pRoot2->val)
                return false;
            
            return isSymmetrical(pRoot1->left, pRoot2->right)
                && isSymmetrical(pRoot1->right, pRoot2->left);
        }
    };
    牛客网提交代码
  • 相关阅读:
    Synchronized和Lock的实现原理和锁升级
    如何禁止CPU指令重排
    MESI缓存一致性
    归并排序
    强软弱虚四种引用和ThreadLocal内存泄露
    VINS-Mono代码分析与总结(完整版)
    IMU误差模型与校准
    小感
    K8S conul部署
    Centos Consul集群及Acl配置
  • 原文地址:https://www.cnblogs.com/ZSY-blog/p/12585053.html
Copyright © 2020-2023  润新知