• 《剑指offer》第七题:重建二叉树


    // 面试题7:重建二叉树
    // 题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输
    // 入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,
    // 2, 4, 7, 3, 5, 6, 8}和中序遍历序列{4, 7, 2, 1, 5, 3, 8, 6},则重建出
    // 图2.6所示的二叉树并输出它的头结点。
    
    #include "BinaryTree.h"
    #include <exception>
    #include <cstdio>
    
    BinaryTreeNode* ConstructCore(int* startPreorder, int* endPreorder, int* startInorder, int* endInorder);
    
    BinaryTreeNode* Construct(int* preorder, int* inorder, int length)
    {
        //鲁棒性测试 1.空数组 2.长度小于等于0
        if (preorder == nullptr || inorder == nullptr || length <= 0)
            return nullptr;
    
        return ConstructCore(preorder, preorder + length - 1,
            inorder, inorder + length - 1);
    }
    
    BinaryTreeNode* ConstructCore
    (
        int* startPreorder, int* endPreorder,
        int* startInorder, int* endInorder
    )
    {
        //创建根节点
        int rootValue = startPreorder[0]; //第一个值为根节点
        BinaryTreeNode* root = new BinaryTreeNode();
        root->m_nValue = rootValue;
        root->m_pLeft = root->m_pRight = nullptr;
    
        //如无子节点
        if (startPreorder == endPreorder)
        {
            //且序列有效, 即前序遍历和中序遍历相等, 两种遍历中只有一个根节点
            if (startInorder == endInorder && *startPreorder == *startInorder)
                return root;
            else
                throw std::exception("Invalid input.");
        }
    
        //有子节点, 在中序遍历中寻找根节点
        int* rootInorder = startInorder;
        while (rootInorder <= endInorder && *rootInorder != rootValue)
            ++rootInorder;
    
        //如果没找到根节点, 则序列无效
        if (rootInorder == endInorder && *rootInorder != rootValue)
            throw std::exception("Invalid input.");
    
        int leftLength = rootInorder - startInorder;
        int* leftPreorderEnd = startPreorder + leftLength;
        if (leftLength > 0) //左子节点长度不为0
        {
            //构建左子树
            root->m_pLeft = ConstructCore(startPreorder + 1, leftPreorderEnd,
                startInorder, rootInorder - 1);
        }
        if (leftLength < endPreorder - startPreorder) //右子节点长度不为0
        {
            //构建右子树
            root->m_pRight = ConstructCore(leftPreorderEnd + 1, endPreorder,
                rootInorder + 1, endInorder);
        }
        return root;
    }
    // ====================测试代码====================
    void Test(const char* testName, int* preorder, int* inorder, int length)
    {
        if (testName != nullptr)
            printf("%s begins:
    ", testName);
    
        printf("The preorder sequence is: ");
        for (int i = 0; i < length; ++i)
            printf("%d ", preorder[i]);
        printf("
    ");
    
        printf("The inorder sequence is: ");
        for (int i = 0; i < length; ++i)
            printf("%d ", inorder[i]);
        printf("
    ");
    
        try
        {
            BinaryTreeNode* root = Construct(preorder, inorder, length);
            PrintTree(root);
    
            DestroyTree(root);
        }
        catch (std::exception & exception)
        {
            printf("Invalid Input.
    ");
        }
    }
    
    // 普通二叉树
    //              1
    //           /     
    //          2       3  
    //         /       / 
    //        4       5   6
    //                  /
    //          7       8
    void Test1()
    {
        const int length = 8;
        int preorder[length] = { 1, 2, 4, 7, 3, 5, 6, 8 };
        int inorder[length] = { 4, 7, 2, 1, 5, 3, 8, 6 };
    
        Test("Test1", preorder, inorder, length);
    }
    
    // 所有结点都没有右子结点
    //            1
    //           / 
    //          2   
    //         / 
    //        3 
    //       /
    //      4
    //     /
    //    5
    void Test2()
    {
        const int length = 5;
        int preorder[length] = { 1, 2, 3, 4, 5 };
        int inorder[length] = { 5, 4, 3, 2, 1 };
    
        Test("Test2", preorder, inorder, length);
    }
    
    // 所有结点都没有左子结点
    //            1
    //              
    //              2   
    //                
    //                3 
    //                 
    //                  4
    //                   
    //                    5
    void Test3()
    {
        const int length = 5;
        int preorder[length] = { 1, 2, 3, 4, 5 };
        int inorder[length] = { 1, 2, 3, 4, 5 };
    
        Test("Test3", preorder, inorder, length);
    }
    
    // 树中只有一个结点
    void Test4()
    {
        const int length = 1;
        int preorder[length] = { 1 };
        int inorder[length] = { 1 };
    
        Test("Test4", preorder, inorder, length);
    }
    
    // 完全二叉树
    //              1
    //           /     
    //          2       3  
    //         /      / 
    //        4   5   6   7
    void Test5()
    {
        const int length = 7;
        int preorder[length] = { 1, 2, 4, 5, 3, 6, 7 };
        int inorder[length] = { 4, 2, 5, 1, 6, 3, 7 };
    
        Test("Test5", preorder, inorder, length);
    }
    
    // 输入空指针
    void Test6()
    {
        Test("Test6", nullptr, nullptr, 0);
    }
    
    // 输入的两个序列不匹配
    void Test7()
    {
        const int length = 7;
        int preorder[length] = { 1, 2, 4, 5, 3, 6, 7 };
        int inorder[length] = { 4, 2, 8, 1, 6, 3, 7 };
    
        Test("Test7: for unmatched input", preorder, inorder, length);
    }
    
    int main(int argc, char* argv[])
    {
        Test1();
        Test2();
        Test3();
        Test4();
        Test5();
        Test6();
        Test7();
    
        return 0;
    }
    测试代码
    struct BinaryTreeNode 
    {
        int                    m_nValue; 
        BinaryTreeNode*        m_pLeft;  
        BinaryTreeNode*        m_pRight; 
    };
    
    __declspec( dllexport ) BinaryTreeNode* CreateBinaryTreeNode(int value);
    __declspec( dllexport ) void ConnectTreeNodes(BinaryTreeNode* pParent, BinaryTreeNode* pLeft, BinaryTreeNode* pRight);
    __declspec( dllexport ) void PrintTreeNode(const BinaryTreeNode* pNode);
    __declspec( dllexport ) void PrintTree(const BinaryTreeNode* pRoot);
    __declspec( dllexport ) void DestroyTree(BinaryTreeNode* pRoot);
    BinaryTree.h
    #include <cstdio>
    #include "BinaryTree.h"
    
    //新建一个父节点
    BinaryTreeNode* CreateBinaryTreeNode(int value)
    {
        BinaryTreeNode* pNode = new BinaryTreeNode();
        pNode->m_nValue = value;
        pNode->m_pLeft = nullptr;
        pNode->m_pRight = nullptr;
    
        return pNode;
    }
    
    //父节点连接左右子节点
    void ConnectTreeNodes(BinaryTreeNode* pParent, BinaryTreeNode* pLeft, BinaryTreeNode* pRight)
    {
        if(pParent != nullptr)
        {
            pParent->m_pLeft = pLeft;
            pParent->m_pRight = pRight;
        }
    }
    
    //打印当前父节点以及左右子节点
    void PrintTreeNode(const BinaryTreeNode* pNode)
    {
        if(pNode != nullptr)
        {
            printf("value of this node is: %d
    ", pNode->m_nValue);
    
            if(pNode->m_pLeft != nullptr)
                printf("value of its left child is: %d.
    ", pNode->m_pLeft->m_nValue);
            else
                printf("left child is nullptr.
    ");
    
            if(pNode->m_pRight != nullptr)
                printf("value of its right child is: %d.
    ", pNode->m_pRight->m_nValue);
            else
                printf("right child is nullptr.
    ");
        }
        else
        {
            printf("this node is nullptr.
    ");
        }
    
        printf("
    ");
    }
    
    //递归调用打印整个二叉树
    void PrintTree(const BinaryTreeNode* pRoot)
    {
        PrintTreeNode(pRoot);
    
        if(pRoot != nullptr)
        {
            if(pRoot->m_pLeft != nullptr)
                PrintTree(pRoot->m_pLeft);
    
            if(pRoot->m_pRight != nullptr)
                PrintTree(pRoot->m_pRight);
        }
    }
    
    //递归调用删除整个树
    void DestroyTree(BinaryTreeNode* pRoot)
    {
        if(pRoot != nullptr)
        {
            BinaryTreeNode* pLeft = pRoot->m_pLeft;
            BinaryTreeNode* pRight = pRoot->m_pRight;
    
            delete pRoot;
            pRoot = nullptr;
    
            DestroyTree(pLeft);
            DestroyTree(pRight);
        }
    }
    BinaryTree.cpp

    分析:递归思想。

     牛客网又给了vector,代码思路和上面一致,指针改为索引,绝对位置变为相对位置,根据代码量来看指针更方便。

    /**
     * Definition for binary tree
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        TreeNode* reConstructBinaryTree(vector<int> preorder,vector<int> inorder) {
            
            int length = int(preorder.size());
            if (preorder.empty() || inorder.empty())
                return nullptr;
            
            return ConstructCore (preorder, inorder, 0, length - 1, 0, length - 1);
        }
        
        TreeNode* ConstructCore (vector<int> preorder, vector<int> inorder,
                                 int startPreorder, int endPreorder, int startInorder, int endInorder)
        {
            //根节点
            TreeNode* root = new TreeNode(preorder[startPreorder]);
            
            //无子节点
            if (startPreorder == endPreorder)
            {
                if (startInorder == endInorder && preorder[startPreorder] == inorder[startInorder])
                    return root;
                else
                    printf("Invaild input.");
                    //throw std::exception("Invaild input.");
            }
            
            //有子节点,先寻找中序遍历中根节点位置
            int rootInorder = startInorder;
            while(startInorder <= endInorder && inorder[rootInorder] != root->val)
                ++rootInorder;
            //如果没找到
            if (startInorder == endInorder && inorder[rootInorder] != root->val)
                printf("Invaild input.");
                //throw std::exception("Invaild input.");
            
            int leftLength = rootInorder - startInorder;
            int rightLength = endInorder - rootInorder;
            int leftPreorderEnd = startPreorder + leftLength;
            if (leftLength > 0) //左子节点
            {
                root->left = ConstructCore(preorder, inorder, 
                                          startPreorder + 1, leftPreorderEnd, startInorder, rootInorder - 1);
            }
            if (rightLength > 0) //右子节点
            {
                root->right = ConstructCore(preorder, inorder,
                                           leftPreorderEnd + 1,  endPreorder, rootInorder + 1, endInorder);
            }
            return root;
        }
        
    };
    牛客网提交代码
  • 相关阅读:
    SQL-server 学习笔记(三):实战建库建表,插入数据
    SQL-server 学习笔记(二):约束
    SQL-server 学习笔记(一):数据库创建
    操作系统——第五章
    操作系统——第四章
    操作系统——第三章
    操作系统——第二章 (二)
    Python之路,Day7
    Day6
    Day5
  • 原文地址:https://www.cnblogs.com/ZSY-blog/p/12518642.html
Copyright © 2020-2023  润新知