• 回归模型与房价预测


    from sklearn.datasets import load_boston
    boston=load_boston()
    boston.keys()
    
    
    
    print(boston.DESCR)
    
    
    
    data=boston.data
    x=data[:,5]
    y=boston.target
    
    import matplotlib.pyplot as plt
    plt.scatter(x,y)
    plt.plot(x,9*x-30)
    plt.show()

    from sklearn .linear_model import LinearRegression
    LineR=LinearRegression()
    LineR.fit(x.reshape(-1,1),y)
    w=LineR.coef_
    b=LineR.intercept_
    print(w,b)
    
    import matplotlib.pyplot as plt
    plt.scatter(x,y)
    plt.plot(x,w*x+b,'r')
    plt.show()
    data=boston.data
    x=data[:,5]
    y=boston.target
    import matplotlib.pyplot as plt
    plt.scatter(x,y)
    plt.plot(x,w*x+b)
    plt.show()
    
    from sklearn.linear_model import LinearRegression
    LineR=LinearRegression()
    LineR.fit(x.reshape(-1,1),y)
    w=LineR.coef_
    b=LineR.intercept_
    import matplotlib.pyplot as plt
    x=boston.data[:,12].reshape(-1,1)
    y=boston.target
    plt.figure(figsize=(10,6))
    plt.scatter(x,y)
    
    
    from sklearn.linear_model import LinearRegression
    lineR=LinearRegression()
    lineR.fit(x,y)
    y_pred=lineR.predict(x)
    plt.plot(x,y_pred,'green')
    print(w,b)
    plt.show()
    
    
    from sklearn.linear_model import LinearRegression
    LineR=LinearRegression()
    LineR.fit(x.reshape(-1,1),y)
    w=LineR.coef_
    b=LineR.intercept_
    print(w,b)
    import matplotlib.pyplot as plt
    plt.scatter(x,y)
    plt.plot(x,w*x+b,'r')
    plt.show()
    
    
    
    from sklearn.preprocessing import PolynomialFeatures
    poly=PolynomialFeatures(degree=2)
    x_poly=poly.fit_transform(x)
    
    lrp=LinearRegression()
    lrp.fit(x_poly,y)
    y_ploy_pred=lrp.predict(x_poly)
    
    plt.scatter(x,y)
    plt.plot(x,y_ploy_pred,'r')
    plt.show()
    
    from sklearn.preprocessing import PolynomialFeatures
    poly=PolynomialFeatures(degree=2)
    x_poly=poly.fit_transform(x)
    lrp=LinearRegression()
    lrp.fit(x_poly,y)
    plt.scatter(x,y)
    plt.scatter(x,y_pred)
    plt.scatter(x,y_ploy_pred)
    plt.show()
        
    
    

      

    
    
    
     
  • 相关阅读:
    基于发布/订阅模型的应用程序的主循环设计
    C++使用继承时子对象的内存布局
    安装 CentOS 后的系统配置及软件安装备忘
    环形无锁队列
    并发编程基础
    线程池实现
    Git远程操作
    Unix权限管理
    jquery中,某些写法后来更新导致版本不支持的替代方法
    js相关
  • 原文地址:https://www.cnblogs.com/ZHONGmy/p/10094889.html
Copyright © 2020-2023  润新知