• 4-10 边缘检测2


    图片卷积和矩阵运算不是一回事。矩阵是行列式相乘。

    import cv2
    import numpy as np
    import random
    import math
    img = cv2.imread('image2.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    cv2.imshow('src',img)
    # sobel 1 算子模板 2 图片卷积 3 阈值判决
    # [1 2 1           [ 1 0 -1 
    #  0 0 0             2 0 -2
    # -1 -2 -1 ]        1 0 -1 ]
    
    # [1 2 3 4] [a b c d] a*1+b*2+c*3+d*4 = dst
    # sqrt(a*a+b*b) = f>th(判决明显) 如果f>th,我们就认为是边缘;如果f<th,我们就认为是非边缘.
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dst = np.zeros((height,width,1),np.uint8)
    for i in range(0,height-2):
        for j in range(0,width-2):
            gy = gray[i,j]*1+gray[i,j+1]*2+gray[i,j+2]*1-gray[i+2,j]*1-gray[i+2,j+1]*2-gray[i+2,j+2]*1
            gx = gray[i,j]+gray[i+1,j]*2+gray[i+2,j]-gray[i,j+2]-gray[i+1,j+2]*2-gray[i+2,j+2]
            grad = math.sqrt(gx*gx+gy*gy)
            if grad>50: #梯度>阈值
                dst[i,j] = 255
            else:
                dst[i,j] = 0
    cv2.imshow('dst',dst)
    cv2.waitKey(0)

    import cv2
    import numpy as np
    import random
    import math
    img = cv2.imread('image1.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    cv2.imshow('src',img)
    # sobel 1 算子模板 2 图片卷积 3 阈值判决
    # [1 2 1           [ 1 0 -1 
    #  0 0 0             2 0 -2
    # -1 -2 -1 ]        1 0 -1 ]
    
    # [1 2 3 4] [a b c d] a*1+b*2+c*3+d*4 = dst
    # sqrt(a*a+b*b) = f>th(判决明显) 如果f>th,我们就认为是边缘;如果f<th,我们就认为是非边缘.
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dst = np.zeros((height,width,1),np.uint8)
    for i in range(0,height-2):
        for j in range(0,width-2):
            gy = gray[i,j]*1+gray[i,j+1]*2+gray[i,j+2]*1-gray[i+2,j]*1-gray[i+2,j+1]*2-gray[i+2,j+2]*1
            gx = gray[i,j]+gray[i+1,j]*2+gray[i+2,j]-gray[i,j+2]-gray[i+1,j+2]*2-gray[i+2,j+2]
            grad = math.sqrt(gx*gx+gy*gy)
            if grad>50: #梯度>阈值
                dst[i,j] = 255
            else:
                dst[i,j] = 0
    cv2.imshow('dst',dst)
    cv2.waitKey(0)

    import cv2
    import numpy as np
    import random
    import math
    img = cv2.imread('image0.jpg',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    cv2.imshow('src',img)
    # sobel 1 算子模板 2 图片卷积 3 阈值判决
    # [1 2 1           [ 1 0 -1 
    #  0 0 0             2 0 -2
    # -1 -2 -1 ]        1 0 -1 ]
    
    # [1 2 3 4] [a b c d] a*1+b*2+c*3+d*4 = dst
    # sqrt(a*a+b*b) = f>th(判决明显) 如果f>th,我们就认为是边缘;如果f<th,我们就认为是非边缘.
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dst = np.zeros((height,width,1),np.uint8)
    for i in range(0,height-2):
        for j in range(0,width-2):
            gy = gray[i,j]*1+gray[i,j+1]*2+gray[i,j+2]*1-gray[i+2,j]*1-gray[i+2,j+1]*2-gray[i+2,j+2]*1
            gx = gray[i,j]+gray[i+1,j]*2+gray[i+2,j]-gray[i,j+2]-gray[i+1,j+2]*2-gray[i+2,j+2]
            grad = math.sqrt(gx*gx+gy*gy)
            if grad>50: #梯度>阈值
                dst[i,j] = 255
            else:
                dst[i,j] = 0
    cv2.imshow('dst',dst)
    cv2.waitKey(0)

    import cv2
    import numpy as np
    import random
    import math
    img = cv2.imread('image3.png',1)
    imgInfo = img.shape
    height = imgInfo[0]
    width = imgInfo[1]
    cv2.imshow('src',img)
    # sobel 1 算子模板 2 图片卷积 3 阈值判决
    # [1 2 1           [ 1 0 -1 
    #  0 0 0             2 0 -2
    # -1 -2 -1 ]        1 0 -1 ]
    
    # [1 2 3 4] [a b c d] a*1+b*2+c*3+d*4 = dst
    # sqrt(a*a+b*b) = f>th(判决明显) 如果f>th,我们就认为是边缘;如果f<th,我们就认为是非边缘.
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dst = np.zeros((height,width,1),np.uint8)
    for i in range(0,height-2):
        for j in range(0,width-2):
            gy = gray[i,j]*1+gray[i,j+1]*2+gray[i,j+2]*1-gray[i+2,j]*1-gray[i+2,j+1]*2-gray[i+2,j+2]*1
            gx = gray[i,j]+gray[i+1,j]*2+gray[i+2,j]-gray[i,j+2]-gray[i+1,j+2]*2-gray[i+2,j+2]
            grad = math.sqrt(gx*gx+gy*gy)
            if grad>50: #梯度>阈值
                dst[i,j] = 255
            else:
                dst[i,j] = 0
    cv2.imshow('dst',dst)
    cv2.waitKey(0)
  • 相关阅读:
    正则表达式
    跨域请求/SpringMVC拦截器
    批量导出
    什么是2MSL以及TIME_WAIT的作用
    使用jstack精确找到异常代码的
    nettry 入站事件如何传递到下一个handler
    netty 引用计数器 ,垃圾回收
    elasticsearch 查询优化
    Spark性能优化指南-高级篇(spark shuffle)
    Broadcast与map进行join,避免shuffle,从而优化spark
  • 原文地址:https://www.cnblogs.com/ZHONGZHENHUA/p/9699526.html
Copyright © 2020-2023  润新知