• NOI2010能量采集(数学)


          栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。

          栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。

          由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。

          能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能 量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。

         下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。

         题意为求1-n之间的所有数和1-m之间的所有数两两之间的GCD。
         一道非常经典的莫比乌斯反演的例题,但有一种容斥的方法更加简单。

         考虑枚举每个gcd,那么gcd为当前gcd的倍数的数对就有n/gcd*m/gcd个。

         在考虑把多余的方案去掉,只要枚举gcd的所有倍数,把它们都减掉就好了。

         做的时候就倒着枚举gcd就可以了。

    #include<iostream>
    #include<cstdio>
    using namespace std;
    int gcd(int x,int y){return y?gcd(y,x%y):x;}
    int n,m,mi;
    long long ans,f[100009]; 
    int main()
    {
        cin>>n>>m;mi=min(m,n);
         for(int i=mi;i>=1;--i)
          {
              f[i]=(long long)(m/i)*(n/i);
              for(int j=(i<<1);j<=mi;j+=i)f[i]-=f[j];
              ans+=f[i]*(i*2-1);
          }
        cout<<ans;
        return 0;
    } 
  • 相关阅读:
    简单所以不要忽视,关于 和 程序员应了解的实际应用
    即使用ADO.NET,也要轻量级动态生成更新SQL,比Ormlite性能更高
    即使用ADO.NET,也要轻量级实体映射,比Dapper和Ormlite均快
    如何在前端实现语义缩放(第一步)
    react教程 — 性能优化
    react教程 — 组件
    react教程 — redux
    create-react-app 创建项目 及 配置
    CSS 预处理器
    react 和 vue 对比
  • 原文地址:https://www.cnblogs.com/ZH-comld/p/9744779.html
Copyright © 2020-2023  润新知