栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。
栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。
由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。
能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能 量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。
下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。
题意为求1-n之间的所有数和1-m之间的所有数两两之间的GCD。
一道非常经典的莫比乌斯反演的例题,但有一种容斥的方法更加简单。
考虑枚举每个gcd,那么gcd为当前gcd的倍数的数对就有n/gcd*m/gcd个。
在考虑把多余的方案去掉,只要枚举gcd的所有倍数,把它们都减掉就好了。
做的时候就倒着枚举gcd就可以了。
#include<iostream> #include<cstdio> using namespace std; int gcd(int x,int y){return y?gcd(y,x%y):x;} int n,m,mi; long long ans,f[100009]; int main() { cin>>n>>m;mi=min(m,n); for(int i=mi;i>=1;--i) { f[i]=(long long)(m/i)*(n/i); for(int j=(i<<1);j<=mi;j+=i)f[i]-=f[j]; ans+=f[i]*(i*2-1); } cout<<ans; return 0; }