• [ZJOI2007]时态同步(dfs+贪心)


    Q在电子工艺实习课上学习焊接电路板。一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3.进行标号。电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点,都存在且仅存在一条通路(通路指连接两个元件的导线序列)。

    在电路板上存在一个特殊的元件称为“激发器”。当激发器工作后,产生一个激励电流,通过导线传向每一个它所连接的节点。而中间节点接收到激励电流后,得到信息,并将该激励电流传向与它连接并且尚未接收到激励电流的节点。最终,激烈电流将到达一些“终止节点”――接收激励电流之后不再转发的节点。

    激励电流在导线上的传播是需要花费时间的,对于每条边e,激励电流通过它需要的时间为t,而节点接收到激励电流后的转发可以认为是在瞬间完成的。现在这块电路板要求每一个“终止节点”同时得到激励电路――即保持时态同步。由于当前的构造并不符合时态同步的要求,故需要通过改变连接线的构造。目前小QQ有一个道具,使用一次该道具,可以使得激励电流通过某条连接导线的时间增加一个单位。请问小Q最少使用多少次道具才可使得所有的“终止节点”时态同步?

    Solution

    这题可以直接一遍dfs做,

    我们对于一个节点,先遍历它的所有子树,从中贪心的找出到达叶子的最远距离,并把这个作为局部最优解。

    然后我们把其他所有子树全部调整为那样的距离,再向上回溯。

    Code

    #include<iostream>
    #include<cstdio>
    using namespace std;
    int head[500009],tot,n,s,x,y;
    long long z,ans;
    struct efe
    {
        int n,to;
        long long l;
    }an[1000009];
    void add(int u,int v,long long l)
    {
        an[++tot].n=head[u];
        an[tot].to=v;
        an[tot].l=l;
        head[u]=tot;
    }
    long long dfs(int u,int fa)
    {
    
        long long ma=0;
        for(int i=head[u];i;i=an[i].n)
           if(an[i].to!=fa)an[i].l+=dfs(an[i].to,u);
        for(int i=head[u];i;i=an[i].n)
          if(an[i].to!=fa)ma=max(ma,an[i].l);
        for(int i=head[u];i;i=an[i].n)
          if(an[i].to!=fa)ans+=ma-an[i].l;
        return ma;
    }
    int main()
    {
        cin>>n>>s;
        for(int i=1;i<n;++i)
          scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,z);
        dfs(s,0);
        cout<<ans;
        return 0;
    }
  • 相关阅读:
    py程序----两个判断回文的程序
    Python特性
    python-基本数据类型
    shell编程第一天
    iptables防火墙
    纤维参数测量
    线性代数及其应用(最小二乘、PCA、SVD)
    水流方向检测
    微信跳一跳-MATLAB实现
    相机标定opencv实现
  • 原文地址:https://www.cnblogs.com/ZH-comld/p/9694668.html
Copyright © 2020-2023  润新知