• 最小树形图——朱刘算法学习笔记


    问题描述

    给定一张无向图和一个根r,求出一个n-1条边的一张子图,使得从r出发可以到达任意一个点,同时使得所有选择的边权之和最小。

    根据最小树形图的定义,这张图的除了根的每一个点都必须有且仅有一个入度。

    那么我们可以贪心一点,对于除了根的所有点都找出一条连向它的边且边权最小,称作这个点的代表边,并把这些边权加入答案中。

    然后我们找出了一张图,这张图中每个点都只有一个入度。

    如果不算根的话,它应当是一个外向基环树森林。

    然后我们找到所有的环,把它们缩成一个点。

    再去扫描不在环内的边,假设有u->v,那么这条边的边权要减掉v的代表边权。

    因为v是一个环,如果继续连u->v的边的话,相当于是把原来v的父亲断开,再连上u。

    于是我们就完成了缩点,一直做下去,知道图中没有环。

    无解就是图中除了根有点没有入度。

    代码细节

    1、初始化,我们令id[]表示这个点在那个环里,top[]表示环顶(找环时用),mi[]表示代表边的边权,cnt表示环数。

    2、找环的时候,因为是一颗外向基环树,所以我们对于每个点记录father,这样father就变成了内向基环树,这样可以方便找环。

    3、没有和其他点组成环的让它自己成为一个环。

    4、每做完一轮之后要更新一下点数和根。

    代码

    #include<iostream>
    #include<cstdio>
    #define N 109
    #define M 10009
    #define inf 2e9
    using namespace std;
    int tot,top[N],id[N],cnt,mi[N],n,m,fa[N],r;
    long long ans;
    inline int rd(){
        int x=0;char c=getchar();bool f=0;
        while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
        while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
        return f?-x:x;
    }
    struct edge{int from,to,l;}e[M];
    inline void add(int u,int v,int l){e[++tot].to=v;e[tot].l=l;e[tot].from=u;}
    inline bool solve(){
        while(1){
            for(int i=1;i<=n;++i)id[i]=top[i]=0,mi[i]=inf;
            for(int i=1;i<=m;++i)
                if(e[i].to!=e[i].from&&e[i].l<mi[e[i].to])
                  fa[e[i].to]=e[i].from,mi[e[i].to]=e[i].l;
            int u=0;mi[r]=0;
            for(int i=1;i<=n;++i){
                if(mi[i]==inf)return 0;
                ans+=mi[i];
                for(u=i;u!=r&&top[u]!=i&&!id[u];u=fa[u])top[u]=i;
                if(u!=r&&!id[u]){
                    id[u]=++cnt;
                    for(int v=fa[u];v!=u;v=fa[v])id[v]=cnt;    
                }
            }
            if(!cnt)return 1;
            for(int i=1;i<=n;++i)if(!id[i])id[i]=++cnt;
            for(int i=1;i<=m;++i){
                int num=mi[e[i].to];
                e[i].from=id[e[i].from];e[i].to=id[e[i].to];
                if(e[i].from!=e[i].to)e[i].l-=num;
            } 
            n=cnt;r=id[r];cnt=0;
        }
    }
    int main(){
        n=rd();m=rd();r=rd();int u,v,w;
        for(int i=1;i<=m;++i){
            u=rd();v=rd();w=rd();add(u,v,w);
        }
        if(solve())cout<<ans;
        else puts("-1");
        return 0;
    }
  • 相关阅读:
    go 正则表达式
    go 发送邮件
    beego 定时任务
    go 字符串操作
    BARTScore试试
    《A method for detecting text of arbitrary shapes in natural scenes that improves text spotting》笔记
    CPM-2
    Foxmail配置qq邮箱
    声音克隆MockingBird
    多模态摘要综述
  • 原文地址:https://www.cnblogs.com/ZH-comld/p/10291585.html
Copyright © 2020-2023  润新知