The Bottom of a Graph
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 11981 | Accepted: 4931 |
Description
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
Sample Input
3 3 1 3 2 3 3 1 2 1 1 2 0
Sample Output
1 3 2
思路:
终于过了。。。。
因为模板错误,让我痛不欲生。
这题完成缩点之后,找出没有出度的点就行了。
http://www.cnblogs.com/ZGQblogs/p/9104381.html
我的模板会在此更新,感谢感谢!
我的上一篇博客里面的代码(POJ 1236)的确是错的,这个里面的代码应该就没问题了。。
代码
#include<iostream> #include<cstdio> #include<vector> #include<stack> #include<cstring> using namespace std; int n,m; int book[50008]; int low[50008],num[50008],cnt=1,index; int color[50008]; bool flag[50008]; vector<int>u[50008]; stack<int>st; int sig=0; void Tarjan(int t) { num[t]=low[t]=++index; st.push(t); book[t]=true; int siz=u[t].size(); for(int i=0;i<siz;i++){ if(!num[u[t][i]]){ Tarjan(u[t][i]); low[t]=min(low[t],low[u[t][i]]); } else if(book[u[t][i]]){low[t]=min(low[t],low[u[t][i]]);} } if(num[t]==low[t]){ sig++; while(1){ cnt=st.top(); st.pop(); color[cnt]=sig; book[cnt]=0; if(cnt==t){break;} } } } bool init() { scanf("%d",&n); for(int i=1;i<=n;i++){ u[i].clear(); } while(!st.empty()){ st.pop(); } memset(book,0,sizeof(book)); memset(low,0,sizeof(low)); memset(flag,0,sizeof(flag)); memset(color,0,sizeof(color)); memset(num,0,sizeof(num)); index=0; if(n==0){return false;} scanf("%d",&m); int x,y; for(int i=1;i<=m;i++){ scanf("%d%d",&x,&y); u[x].push_back(y); } return true; } void solve() { int siz; int tle=0; for(int i=1;i<=n;i++){ siz=u[i].size(); for(int j=0;j<siz;j++){ if(color[u[i][j]]!=color[i]){flag[color[i]]=true;} } } for(int i=1;i<=n;i++){ if(!flag[color[i]]){ tle++?printf(" %d",i):printf("%d",i); } } printf(" "); } int main() { while(init()){ for(int i=1;i<=n;i++){ if(!num[i]){Tarjan(i);cnt++;} } solve(); } }