To the moon
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 8372 Accepted Submission(s): 1986
Problem Description
Background
To The Moon is a independent game released in November 2011, it is a role-playing adventure game powered by RPG Maker.
The premise of To The Moon is based around a technology that allows us to permanently reconstruct the memory on dying man. In this problem, we'll give you a chance, to implement the logic behind the scene.
You‘ve been given N integers A[1], A[2],..., A[N]. On these integers, you need to implement the following operations:
1. C l r d: Adding a constant d for every {Ai | l <= i <= r}, and increase the time stamp by 1, this is the only operation that will cause the time stamp increase.
2. Q l r: Querying the current sum of {Ai | l <= i <= r}.
3. H l r t: Querying a history sum of {Ai | l <= i <= r} in time t.
4. B t: Back to time t. And once you decide return to a past, you can never be access to a forward edition anymore.
.. N, M ≤ 105, |A[i]| ≤ 109, 1 ≤ l ≤ r ≤ N, |d| ≤ 104 .. the system start from time 0, and the first modification is in time 1, t ≥ 0, and won't introduce you to a future state.
To The Moon is a independent game released in November 2011, it is a role-playing adventure game powered by RPG Maker.
The premise of To The Moon is based around a technology that allows us to permanently reconstruct the memory on dying man. In this problem, we'll give you a chance, to implement the logic behind the scene.
You‘ve been given N integers A[1], A[2],..., A[N]. On these integers, you need to implement the following operations:
1. C l r d: Adding a constant d for every {Ai | l <= i <= r}, and increase the time stamp by 1, this is the only operation that will cause the time stamp increase.
2. Q l r: Querying the current sum of {Ai | l <= i <= r}.
3. H l r t: Querying a history sum of {Ai | l <= i <= r} in time t.
4. B t: Back to time t. And once you decide return to a past, you can never be access to a forward edition anymore.
.. N, M ≤ 105, |A[i]| ≤ 109, 1 ≤ l ≤ r ≤ N, |d| ≤ 104 .. the system start from time 0, and the first modification is in time 1, t ≥ 0, and won't introduce you to a future state.
Input
n m
A1 A2 ... An
... (here following the m operations. )
A1 A2 ... An
... (here following the m operations. )
Output
... (for each query, simply print the result. )
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
2 4
0 0
C 1 1 1
C 2 2 -1
Q 1 2
H 1 2 1
Sample Output
4
55
9
15
0
1
Author
HIT
Source
题意:
长度为n的整数序列,支持四个操作
1:Q l r 输出区间[l,r]的总和
2:C l r x 区间[l,r]的每个值都增加x,此时时间增加1
3:H l r t 询问在t时刻区间[l,r]的总和
4:B t 时间回到t
延时标记如果下传的话,内存不够,所以要节省内存,按照正常的区间更新的操作,标记下传,就新开节点,这道题中,我们不新开节点,用一个标记来记录当前节点的整段区间被累加了多少,当询问的时候,从根节点走到目标节点的过程中累加所经过节点上的标记值就可以。
所以就不能用以前的查询写法,if(L<=m) ... if(R> m) ... ,就需要换一种写法,就是这里:
//if(L<=m) ret+=query(ls[rt],L,R,lson,c); //if(R> m) ret+=query(rs[rt],L,R,rson,c); if(R<=m) ret+=query(ls[rt],L,R,lson); else if(L> m) ret+=query(rs[rt],L,R,rson); else ret+=query(ls[rt],L,m,lson)+query(rs[rt],m+1,R,rson); return ret;
这道题真的自闭,wa了一晚上,最后发现,延时标记累加的时候,lazy[rt]*(R-L+1)写成了lazy[rt]*(r-l+1)。。。
其他的就是时间回到t的时候,直接将时间的值更新就可以。
代码:
1 //HDU 4348.To the moon-可持久化线段树-区间更新,延时标记不下传,优化空间 2 #include<iostream> 3 #include<cstdio> 4 #include<cstring> 5 #include<algorithm> 6 #include<bitset> 7 #include<cassert> 8 #include<cctype> 9 #include<cmath> 10 #include<cstdlib> 11 #include<ctime> 12 #include<deque> 13 #include<iomanip> 14 #include<list> 15 #include<map> 16 #include<queue> 17 #include<set> 18 #include<stack> 19 #include<vector> 20 using namespace std; 21 typedef long long ll; 22 typedef pair<int,int> pii; 23 24 const double PI=acos(-1.0); 25 const double eps=1e-6; 26 const ll mod=1e9+7; 27 const int inf=0x3f3f3f3f; 28 const int maxn=1e5+10; 29 const int maxm=100+10; 30 #define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 31 32 #define lson l,m 33 #define rson m+1,r 34 35 int rt[maxn],ls[maxn<<5],rs[maxn<<5],sz; 36 ll sum[maxn<<5],lazy[maxn<<5]; 37 38 void pushup(int rt,int m) 39 { 40 sum[rt]=sum[ls[rt]]+sum[rs[rt]]+(ll)lazy[rt]*m; 41 } 42 43 void build(int &rt,int l,int r) 44 { 45 rt=++sz;lazy[rt]=0; 46 if(l==r){ 47 scanf("%lld",&sum[rt]); 48 return ; 49 } 50 51 int m=(l+r)>>1; 52 build(ls[rt],lson); 53 build(rs[rt],rson); 54 pushup(rt,r-l+1); 55 } 56 57 void update(int pre,int &rt,int L,int R,int l,int r,ll c) 58 { 59 rt=++sz;lazy[rt]=lazy[pre];sum[rt]=sum[pre]; 60 ls[rt]=ls[pre];rs[rt]=rs[pre]; 61 if(L<=l&&r<=R){ 62 lazy[rt]+=c; 63 sum[rt]+=(ll)c*(r-l+1); 64 return ; 65 } 66 67 int m=(l+r)>>1; 68 if(L<=m) update(ls[pre],ls[rt],L,R,lson,c); 69 if(R> m) update(rs[pre],rs[rt],L,R,rson,c); 70 pushup(rt,r-l+1); 71 } 72 73 ll query(int rt,int L,int R,int l,int r) 74 { 75 if(L<=l&&r<=R){ 76 return sum[rt]; 77 } 78 79 //ll ret=(ll)lazy[rt]*(r-l+1); 80 ll ret=(ll)lazy[rt]*(R-L+1); 81 int m=(l+r)>>1; 82 //if(L<=m) ret+=query(ls[rt],L,R,lson,c); 83 //if(R> m) ret+=query(rs[rt],L,R,rson,c); 84 if(R<=m) ret+=query(ls[rt],L,R,lson); 85 else if(L> m) ret+=query(rs[rt],L,R,rson); 86 else ret+=query(ls[rt],L,m,lson)+query(rs[rt],m+1,R,rson); 87 return ret; 88 } 89 90 char op[5]; 91 92 int main() 93 { 94 int n,m; 95 while(~scanf("%d%d",&n,&m)){ 96 sz=0;memset(rt,0,sizeof(rt)); 97 build(rt[0],1,n); 98 int tag=0; 99 for(int i=1;i<=m;i++){ 100 scanf("%s",op); 101 if(op[0]=='C'){ 102 int l,r;ll c; 103 scanf("%d%d%lld",&l,&r,&c); 104 tag++; 105 update(rt[tag-1],rt[tag],l,r,1,n,c); 106 } 107 else if(op[0]=='Q'){ 108 int l,r; 109 scanf("%d%d",&l,&r); 110 printf("%lld ",query(rt[tag],l,r,1,n)); 111 } 112 else if(op[0]=='H'){ 113 int l,r,d; 114 scanf("%d%d%d",&l,&r,&d); 115 printf("%lld ",query(rt[d],l,r,1,n)); 116 } 117 else if(op[0]=='B'){ 118 int x; 119 scanf("%d",&x); 120 tag=x; 121 } 122 } 123 } 124 return 0; 125 }
讲道理,这题还是没完全弄明白,还是有点迷糊。
mdzz。。。