• 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)


    J. Sum

    • 26.87%
    •  1000ms
    •  512000K
     

    A square-free integer is an integer which is indivisible by any square number except 11. For example, 6 = 2 cdot 36=23 is square-free, but 12 = 2^2 cdot 312=223 is not, because 2^222 is a square number. Some integers could be decomposed into product of two square-free integers, there may be more than one decomposition ways. For example, 6 = 1cdot 6=6 cdot 1=2cdot 3=3cdot 2, n=ab6=16=61=23=32,n=ab and n=ban=ba are considered different if a ot = ba̸=b. f(n)f(n) is the number of decomposition ways that n=abn=ab such that aa and bb are square-free integers. The problem is calculating sum_{i = 1}^nf(i)i=1nf(i).

    Input

    The first line contains an integer T(Tle 20)T(T20), denoting the number of test cases.

    For each test case, there first line has a integer n(n le 2cdot 10^7)n(n2107).

    Output

    For each test case, print the answer sum_{i = 1}^n f(i)i=1nf(i).

    Hint

    sum_{i = 1}^8 f(i)=f(1)+ cdots +f(8)i=18f(i)=f(1)++f(8)
    =1+2+2+1+2+4+2+0=14=1+2+2+1+2+4+2+0=14.

    样例输入

    2
    5
    8

    样例输出

    8
    14

    题目来源

    ACM-ICPC 2018 南京赛区网络预赛

     

    题意很好理解,就是求1-n中没有平方因数的数的个数。首先预处理出来,然后就直接输出就可以了。

    类似欧拉函数筛素数,在筛素数的时候把平方因数筛掉就可以了。

     

    代码:

     1 //J-筛无平方因数的数
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<algorithm>
     6 #include<bitset>
     7 #include<cassert>
     8 #include<cctype>
     9 #include<cmath>
    10 #include<cstdlib>
    11 #include<ctime>
    12 #include<deque>
    13 #include<iomanip>
    14 #include<list>
    15 #include<map>
    16 #include<queue>
    17 #include<set>
    18 #include<stack>
    19 #include<vector>
    20 using namespace std;
    21 typedef long long ll;
    22 
    23 const double PI=acos(-1.0);
    24 const double eps=1e-6;
    25 const ll mod=1e9+7;
    26 const int inf=0x3f3f3f3f;
    27 const int maxn=2e7+10;
    28 const int maxm=100+10;
    29 #define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    30 
    31 bool is_prime[maxn];
    32 int prime[maxn];
    33 ll f[maxn],ans[maxn];
    34 int h;
    35 
    36 void init(int n)
    37 {
    38     f[1]=1;
    39     for(int i=2;i<n;i++){
    40         if(!is_prime[i]){
    41             prime[++h]=i;
    42             f[i]=2;
    43         }
    44         for(int j=1;j<=h&&i*prime[j]<n;j++){
    45             is_prime[i*prime[j]]=1;
    46             if(i%prime[j]==0){
    47                 if(i%(prime[j]*prime[j])==0) 
    48                     f[i*prime[j]]=0;
    49                 else 
    50                     f[i*prime[j]]=f[i]/2;
    51                 break;
    52             }
    53             else{
    54                 f[i*prime[j]]=f[i]*2;
    55             }
    56         }
    57     }
    58     for(int i=1;i<maxn;i++)
    59         ans[i]=ans[i-1]+f[i];
    60 }
    61 
    62 int main()
    63 {
    64     h=0;
    65     init(maxn);
    66     int t;
    67     scanf("%d",&t);
    68     while(t--){
    69         int n;
    70         scanf("%d",&n);
    71         printf("%lld
    ",ans[n]);
    72     }
    73     return 0;
    74 }

    溜了。。。

  • 相关阅读:
    (转)MySQL中MyISAM引擎与InnoDB引擎性能简单测试
    (转)数据库水平切分的实现原理解析
    ECShop笔记(品牌类)
    ECShop笔记(通用类)
    (转)InnoDB的性能(zz)
    ECSHOP笔记(商品类 三)
    ECShop笔记(积分类)
    ECShop笔记(商品类)
    ECShop笔记(二)
    phpcms 点击排行榜的改进
  • 原文地址:https://www.cnblogs.com/ZERO-/p/9648463.html
Copyright © 2020-2023  润新知