• DPDK L2fwd 源码阅读


    代码部分

    /* SPDX-License-Identifier: BSD-3-Clause
     * Copyright(c) 2010-2016 Intel Corporation
     */
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <stdint.h>
    #include <inttypes.h>
    #include <sys/types.h>
    #include <sys/queue.h>
    #include <netinet/in.h>
    #include <setjmp.h>
    #include <stdarg.h>
    #include <ctype.h>
    #include <errno.h>
    #include <getopt.h>
    #include <signal.h>
    #include <stdbool.h>
    
    #include <rte_common.h>
    #include <rte_log.h>
    #include <rte_malloc.h>
    #include <rte_memory.h>
    #include <rte_memcpy.h>
    #include <rte_eal.h>
    #include <rte_launch.h>
    #include <rte_atomic.h>
    #include <rte_cycles.h>
    #include <rte_prefetch.h>
    #include <rte_lcore.h>
    #include <rte_per_lcore.h>
    #include <rte_branch_prediction.h>
    #include <rte_interrupts.h>
    #include <rte_random.h>
    #include <rte_debug.h>
    #include <rte_ether.h>
    #include <rte_ethdev.h>
    #include <rte_mempool.h>
    #include <rte_mbuf.h>
    
    static volatile bool force_quit;
    
    /* MAC updating enabled by default */
    static int mac_updating = 1;
    /* MAC updating,默认开启。若不开启,则是和basicfw一样的模式。开启后,会有如下影响:
    
    The source MAC address is replaced by the TX_PORT MAC address
    源MAC地址会改写成发送端口的MAC地址
    
    The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID
    改写目的MAC地址,改写为 02:00:00:00:00:<发送端口的port id>
    */
    
    #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
    
    #define MAX_PKT_BURST 32
    #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
    #define MEMPOOL_CACHE_SIZE 256
    
    /*
     * Configurable number of RX/TX ring descriptors
     */
    #define RTE_TEST_RX_DESC_DEFAULT 1024
    #define RTE_TEST_TX_DESC_DEFAULT 1024
    static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
    static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
    
    /* ethernet addresses of ports */
    static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
    
    /* mask of enabled ports */
    static uint32_t l2fwd_enabled_port_mask = 0;
    
    /* list of enabled ports */
    static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
    
    static unsigned int l2fwd_rx_queue_per_lcore = 1; // 每个逻辑核最多可以用来处理几个端口/队列(L2fwd 一个端口分配各一个收发队列)
    
    
    #define MAX_RX_QUEUE_PER_LCORE 16
    #define MAX_TX_QUEUE_PER_PORT 16
    struct lcore_queue_conf { // 逻辑核上的队列配置
    	unsigned n_rx_port; // 该 lcore 上绑定多少个端口,也作为下一个数组的下标(0 ~ n-1)。
    	unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; // 存放一系列端口号,绑定哪些端口。
    } __rte_cache_aligned;
    
    // 这也就是 poll module driver 思想。绑定 lcore 和 port,特定的 lcore 轮询对应的一个或多个 port
    
    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; // 数组下标是 lcore id
    
    static struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS]; // 用于缓冲未来要发送的数据包的结构,API rte_eth_tx_buffer 和 rte_eth_tx_buffer_flush使用的结构
    
    static struct rte_eth_conf port_conf = {
    	.rxmode = { // RX feature 见 flow_filtering
    		.split_hdr_size = 0,
    		.ignore_offload_bitfield = 1,
    		.offloads = DEV_RX_OFFLOAD_CRC_STRIP,
    	},
    	.txmode = { // TX feature 
    		.mq_mode = ETH_MQ_TX_NONE, // mq_多队列选项,有一些宏来定义用多队列发包的方法
    	},
    };
    
    struct rte_mempool * l2fwd_pktmbuf_pool = NULL;
    
    /* Per-port statistics struct */
    struct l2fwd_port_statistics {
    	uint64_t tx; // 发包的数量
    	uint64_t rx; // 收包的数量
    	uint64_t dropped; // 丢包的数量
    } __rte_cache_aligned;
    struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
    
    #define MAX_TIMER_PERIOD 86400 /* 1 day max */
    /* A tsc-based timer responsible for triggering statistics printout */
    // timer 负责每隔一段时间触发打印数据
    static uint64_t timer_period = 10; /* default period is 10 seconds */
    
    /* Print out statistics on packets dropped */
    static void
    print_stats(void)
    {
    	uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
    	unsigned portid;
    
    	total_packets_dropped = 0;
    	total_packets_tx = 0;
    	total_packets_rx = 0;
    
    	const char clr[] = { 27, '[', '2', 'J', '' };
    	const char topLeft[] = { 27, '[', '1', ';', '1', 'H','' };
    
    		/* Clear screen and move to top left */
    	printf("%s%s", clr, topLeft);
    
    	printf("
    Port statistics ====================================");
    
    	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
    		/* skip disabled ports */
    		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
    			continue;
    		printf("
    Statistics for port %u ------------------------------"
    			   "
    Packets sent: %24"PRIu64
    			   "
    Packets received: %20"PRIu64
    			   "
    Packets dropped: %21"PRIu64,
    			   portid,
    			   port_statistics[portid].tx,
    			   port_statistics[portid].rx,
    			   port_statistics[portid].dropped);
    
    		total_packets_dropped += port_statistics[portid].dropped;
    		total_packets_tx += port_statistics[portid].tx;
    		total_packets_rx += port_statistics[portid].rx;
    	}
    	printf("
    Aggregate statistics ==============================="
    		   "
    Total packets sent: %18"PRIu64
    		   "
    Total packets received: %14"PRIu64
    		   "
    Total packets dropped: %15"PRIu64,
    		   total_packets_tx,
    		   total_packets_rx,
    		   total_packets_dropped);
    	printf("
    ====================================================
    ");
    }
    
    static void
    l2fwd_mac_updating(struct rte_mbuf *m, unsigned dest_portid) // 改写包的 MAC 层信息
    {
    	struct ether_hdr *eth;
    	void *tmp;
    
    	eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
    
    	/* 02:00:00:00:00:xx */
    	tmp = &eth->d_addr.addr_bytes[0]; // 改写目的 MAC 地址为 02:00:00:00:00:<发送端口的port id>
    	*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40);
    
    	/* src addr */
    	// 改写 源 MAC 地址 改写成发送端口的MAC地址
    	ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], &eth->s_addr);
    }
    
    static void
    l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
    {
    	unsigned dst_port;
    	int sent;
    	struct rte_eth_dev_tx_buffer *buffer;
    
    	dst_port = l2fwd_dst_ports[portid]; // 与之配对的端口
    
    	if (mac_updating) // 如果开启了 mac updating 模式
    		l2fwd_mac_updating(m, dst_port); // 调整 MAC 地址
    
    	buffer = tx_buffer[dst_port]; // 该端口的 tx_buffer
    	sent = rte_eth_tx_buffer(dst_port, 0, buffer, m); // 将收到的包缓存在 tx_buffer 里,用于未来的发送。
    	// 返回值 如果为0,表示 pkt 已经被缓存
    	// 返回值 N>0,表示由于缓冲区被flush导致N个pkt被发送。
    	
    	if (sent)
    		port_statistics[dst_port].tx += sent;
    }
    
    /* main processing loop */
    static void
    l2fwd_main_loop(void)
    {
    	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
    	struct rte_mbuf *m;
    	int sent;
    	unsigned lcore_id;
    	uint64_t prev_tsc, diff_tsc, cur_tsc, timer_tsc;
    	unsigned i, j, portid, nb_rx;
    	struct lcore_queue_conf *qconf;
    	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S *
    			BURST_TX_DRAIN_US;
    	struct rte_eth_dev_tx_buffer *buffer;
    
    	prev_tsc = 0;
    	timer_tsc = 0;
    
    	lcore_id = rte_lcore_id(); // 获取自己的 lcore id
    	qconf = &lcore_queue_conf[lcore_id];
    
    	if (qconf->n_rx_port == 0) { // 因为对每一个 lcore 都执行 main 线程,如果该 lcore 上没有绑定端口,就无事可做。
    		RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do
    ", lcore_id);
    		return;
    	}
    
    	RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u
    ", lcore_id);
    
    	for (i = 0; i < qconf->n_rx_port; i++) {
    
    		portid = qconf->rx_port_list[i];
    		RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u
    ", lcore_id,
    			portid); // 显示一下 lcore 和 port 的对应关系
    
    	}
    
    	while (!force_quit) {
    
    		cur_tsc = rte_rdtsc(); // 获取从开机起至当前的时间戳
    
    		/*
    		 * TX burst queue drain
    		 * 发送逻辑
    		 */
    		diff_tsc = cur_tsc - prev_tsc;
    		if (unlikely(diff_tsc > drain_tsc)) { // 时间到了
    			// 如果tx_buffer满,会发送一批 pkt 出去。如果没满,为了保证没有没被发出的 pkt,所以每个一小段时间,也会发送队列中的包
    			for (i = 0; i < qconf->n_rx_port; i++) { // 对 lcore 负责的每个端口
    
    				portid = l2fwd_dst_ports[qconf->rx_port_list[i]]; // 与之配对的端口
    				buffer = tx_buffer[portid];
    
    				sent = rte_eth_tx_buffer_flush(portid, 0, buffer); // 将 buffer 里的 pkt 全部从 port id 的 0号 Tx queue 发出去
    				if (sent) // 返回值是成功发出的 pkt 数量
    					port_statistics[portid].tx += sent;
    
    			}
    
    			/* if timer is enabled */
    			if (timer_period > 0) {
    
    				/* advance the timer */
    				timer_tsc += diff_tsc;
    
    				/* if timer has reached its timeout */
    				if (unlikely(timer_tsc >= timer_period)) {
    
    					/* do this only on master core */
    					if (lcore_id == rte_get_master_lcore()) { // 如果计时器到了,就打印一下信息。只在主核心打印信息
    						print_stats();
    						/* reset the timer */
    						timer_tsc = 0;
    					}
    				}
    			}
    
    			prev_tsc = cur_tsc;
    		}
    
    		/*
    		 * Read packet from RX queues
    		 * 接收逻辑
    		 */
    		for (i = 0; i < qconf->n_rx_port; i++) { // 对 lcore 负责的每个端口
    
    			portid = qconf->rx_port_list[i]; // 获取端口号
    			nb_rx = rte_eth_rx_burst(portid, 0,
    						 pkts_burst, MAX_PKT_BURST); // 收包,收到该端口的 0 号 rx queue
    
    			port_statistics[portid].rx += nb_rx; // 更新端口上的收包计数器
    
    			for (j = 0; j < nb_rx; j++) { // 对每一个包
    				m = pkts_burst[j]; // 包的 mbuf 指针
    				// Prefetch: 预取一个 cache 行。参数是要取的地址,类型 void *
    				// rte_pktmbuf_mtod:返回 mbuf 中 data 的起始地址
    				rte_prefetch0(rte_pktmbuf_mtod(m, void *)); 
    				l2fwd_simple_forward(m, portid); // 收包后进行 L2fwd !!
    			}
    		}
    	}
    }
    
    static int
    l2fwd_launch_one_lcore(__attribute__((unused)) void *dummy)
    {
    	l2fwd_main_loop();
    	return 0;
    }
    
    /* display usage */
    static void
    l2fwd_usage(const char *prgname)
    {
    	printf("%s [EAL options] -- -p PORTMASK [-q NQ]
    "
    	       "  -p PORTMASK: hexadecimal bitmask of ports to configure
    "
    	       "  -q NQ: number of queue (=ports) per lcore (default is 1)
    "
    		   "  -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default, 86400 maximum)
    "
    		   "  --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)
    "
    		   "      When enabled:
    "
    		   "       - The source MAC address is replaced by the TX port MAC address
    "
    		   "       - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID
    ",
    	       prgname);
    }
    
    static int
    l2fwd_parse_portmask(const char *portmask)
    {
    	char *end = NULL;
    	unsigned long pm;
    
    	/* parse hexadecimal string */
    	pm = strtoul(portmask, &end, 16); // 将字符串 portmask 转成 16 进制无符号长整形
    	if ((portmask[0] == '') || (end == NULL) || (*end != ''))
    		return -1;
    
    	if (pm == 0)
    		return -1;
    
    	return pm;
    }
    
    static unsigned int
    l2fwd_parse_nqueue(const char *q_arg)
    {
    	char *end = NULL;
    	unsigned long n;
    
    	/* parse hexadecimal string */
    	n = strtoul(q_arg, &end, 10);
    	if ((q_arg[0] == '') || (end == NULL) || (*end != ''))
    		return 0;
    	if (n == 0)
    		return 0;
    	if (n >= MAX_RX_QUEUE_PER_LCORE)
    		return 0;
    
    	return n;
    }
    
    static int
    l2fwd_parse_timer_period(const char *q_arg)
    {
    	char *end = NULL;
    	int n;
    
    	/* parse number string */
    	n = strtol(q_arg, &end, 10);
    	if ((q_arg[0] == '') || (end == NULL) || (*end != ''))
    		return -1;
    	if (n >= MAX_TIMER_PERIOD)
    		return -1;
    
    	return n;
    }
    
    static const char short_options[] =
    	"p:"  /* portmask */
    	"q:"  /* number of queues */
    	"T:"  /* timer period */
    	;
    
    #define CMD_LINE_OPT_MAC_UPDATING "mac-updating"
    #define CMD_LINE_OPT_NO_MAC_UPDATING "no-mac-updating"
    
    enum {
    	/* long options mapped to a short option */
    
    	/* first long only option value must be >= 256, so that we won't
    	 * conflict with short options */
    	CMD_LINE_OPT_MIN_NUM = 256,
    };
    
    static const struct option lgopts[] = {
    	{ CMD_LINE_OPT_MAC_UPDATING, no_argument, &mac_updating, 1},
    	{ CMD_LINE_OPT_NO_MAC_UPDATING, no_argument, &mac_updating, 0},
    	{NULL, 0, 0, 0}
    };
    
    /* Parse the argument given in the command line of the application */
    static int
    l2fwd_parse_args(int argc, char **argv)
    {
    	int opt, ret, timer_secs;
    	char **argvopt;
    	int option_index;
    	char *prgname = argv[0]; // l2fwd
    
    	argvopt = argv;
    
    	while ((opt = getopt_long(argc, argvopt, short_options,
    				  lgopts, &option_index)) != EOF) { // linux 下解析命令行参数的函数。支持由两个横杠开头的长选项。
    		// 关于这个函数可以 man getopt_long
    		switch (opt) { // 解析成功时返回字符
    		/* portmask */
    		case 'p': // 端口掩码
    			l2fwd_enabled_port_mask = l2fwd_parse_portmask(optarg); // 解析成功时,将字符后面的参数放到 optarg 里
    			if (l2fwd_enabled_port_mask == 0) {
    				printf("invalid portmask
    ");
    				l2fwd_usage(prgname);
    				return -1;
    			}
    			break;
    
    		/* nqueue */
    		case 'q': // A number of queues (=ports) per lcore (default is 1)
    				  // q 后面跟着的数字是每个逻辑核心上要绑定多少个队列(端口)
    				  // 例如 -q 4 意味着该应用使用一个 lcore 轮询 4个端口。如果共有16个端口,则只需要4个lcore
    			l2fwd_rx_queue_per_lcore = l2fwd_parse_nqueue(optarg);
    			if (l2fwd_rx_queue_per_lcore == 0) {
    				printf("invalid queue number
    ");
    				l2fwd_usage(prgname);
    				return -1;
    			}
    			break;
    
    		/* timer period */
    		case 'T':
    			timer_secs = l2fwd_parse_timer_period(optarg);
    			if (timer_secs < 0) {
    				printf("invalid timer period
    ");
    				l2fwd_usage(prgname);
    				return -1;
    			}
    			timer_period = timer_secs;
    			break;
    
    		/* long options */
    		case 0: // 解析到了长选项 会返回0,长选项形如 --arg=param or --arg param.
    			break;
    
    		default:
    			l2fwd_usage(prgname);
    			return -1;
    		}
    	}
    
    	if (optind >= 0) // optind 是 argv 中下一个要被处理的参数的 index
    		argv[optind-1] = prgname;
    
    	ret = optind-1; 
    	optind = 1; /* reset getopt lib */ // 解析完所有的参数要让 optind 重新指向 1
    	return ret;
    }
    
    /* Check the link status of all ports in up to 9s, and print them finally */
    static void
    check_all_ports_link_status(uint32_t port_mask)
    {
    #define CHECK_INTERVAL 100 /* 100ms */
    #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
    	uint16_t portid;
    	uint8_t count, all_ports_up, print_flag = 0;
    	struct rte_eth_link link;
    
    	printf("
    Checking link status");
    	fflush(stdout);
    	for (count = 0; count <= MAX_CHECK_TIME; count++) {
    		if (force_quit)
    			return;
    		all_ports_up = 1;
    		RTE_ETH_FOREACH_DEV(portid) {
    			if (force_quit)
    				return;
    			if ((port_mask & (1 << portid)) == 0)
    				continue;
    			memset(&link, 0, sizeof(link));
    			rte_eth_link_get_nowait(portid, &link);
    			/* print link status if flag set */
    			if (print_flag == 1) {
    				if (link.link_status)
    					printf(
    					"Port%d Link Up. Speed %u Mbps - %s
    ",
    						portid, link.link_speed,
    				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
    					("full-duplex") : ("half-duplex
    "));
    				else
    					printf("Port %d Link Down
    ", portid);
    				continue;
    			}
    			/* clear all_ports_up flag if any link down */
    			if (link.link_status == ETH_LINK_DOWN) {
    				all_ports_up = 0;
    				break;
    			}
    		}
    		/* after finally printing all link status, get out */
    		if (print_flag == 1)
    			break;
    
    		if (all_ports_up == 0) {
    			printf(".");
    			fflush(stdout);
    			rte_delay_ms(CHECK_INTERVAL);
    		}
    
    		/* set the print_flag if all ports up or timeout */
    		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
    			print_flag = 1;
    			printf("done
    ");
    		}
    	}
    }
    
    static void
    signal_handler(int signum)
    {
    	if (signum == SIGINT || signum == SIGTERM) {
    		printf("
    
    Signal %d received, preparing to exit...
    ",
    				signum);
    		force_quit = true; //当我们退出是ctrl+c不是直接将进程杀死,而是会将force_quit置为true,让程序自然退出,这样程序就来得及完成最后退出之前的操作。
    	}
    }
    
    int
    main(int argc, char **argv)
    {
    	struct lcore_queue_conf *qconf;
    	int ret;
    	uint16_t nb_ports;
    	uint16_t nb_ports_available = 0;
    	uint16_t portid, last_port;
    	unsigned lcore_id, rx_lcore_id;
    	unsigned nb_ports_in_mask = 0;
    	unsigned int nb_lcores = 0;
    	unsigned int nb_mbufs;
    
    	/* init EAL */
    	// 解析 EAL 的参数
    	ret = rte_eal_init(argc, argv);
    	if (ret < 0)
    		rte_exit(EXIT_FAILURE, "Invalid EAL arguments
    ");
    	argc -= ret;
    	argv += ret;
    
    	force_quit = false;
    	signal(SIGINT, signal_handler);
    	signal(SIGTERM, signal_handler);
    
    	/* parse application arguments (after the EAL ones) */
    	// 解析 l2fwd 的运行参数
    	ret = l2fwd_parse_args(argc, argv);
    	if (ret < 0)
    		rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments
    ");
    
    	printf("MAC updating %s
    ", mac_updating ? "enabled" : "disabled"); // 默认开启 mac updating 这一功能。
    
    	/* convert to number of cycles */
    	timer_period *= rte_get_timer_hz(); // 获得CPU主频,单位hz (1s多少个cycle),位于rte_cycles.h
    
    	nb_ports = rte_eth_dev_count(); // 网口数量
    	if (nb_ports == 0)
    		rte_exit(EXIT_FAILURE, "No Ethernet ports - bye
    ");
    
    	/* check port mask to possible port mask */
    	// 检查掩码和可用网口数量是否有冲突
    	if (l2fwd_enabled_port_mask & ~((1 << nb_ports) - 1))
    		rte_exit(EXIT_FAILURE, "Invalid portmask; possible (0x%x)
    ",
    			(1 << nb_ports) - 1);
    
    	/* reset l2fwd_dst_ports */
    
    	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
    		l2fwd_dst_ports[portid] = 0; // 先重置这个数组
    	last_port = 0; 
    
    	/*
    	 * Each logical core is assigned a dedicated TX queue on each port.
    	 */
    	RTE_ETH_FOREACH_DEV(portid) { // 使用RTE_ETH_FOREACH_DEV()宏来访问所有的 ethdev
    		/* skip ports that are not enabled */
    		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
    			continue;
    
    		if (nb_ports_in_mask % 2) {
    			l2fwd_dst_ports[portid] = last_port;
    			l2fwd_dst_ports[last_port] = portid;
    		}
    		else
    			last_port = portid;
    
    		nb_ports_in_mask++; // 这些逻辑可以实现 basicfwd 那样的一对对端口互相转发。
    	}
    	if (nb_ports_in_mask % 2) {
    		printf("Notice: odd number of ports in portmask.
    ");
    		l2fwd_dst_ports[last_port] = last_port; // 如果是奇数个端口,会有最后一个端口的 dst_port 是自己
    	}
    
    	rx_lcore_id = 0; // 从逻辑核心id 0开始
    	qconf = NULL;
    
    	/* Initialize the port/queue configuration of each logical core */
    	// 在每一个端口上,配置逻辑核、配置队列。
    	RTE_ETH_FOREACH_DEV(portid) {
    		/* skip ports that are not enabled */
    		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
    			continue;
    
    		/* get the lcore_id for this port */
    		// 为该端口配置一个逻辑核。
    		while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 
    		       lcore_queue_conf[rx_lcore_id].n_rx_port ==
    		       l2fwd_rx_queue_per_lcore) {
    			/*从lcore id = 0 开始循环:
    			如果:如果该 lcore id 有效(已经被占用),则检查下一个逻辑核。
    			如果该 lcore 是空闲的,要检查该 lcore 上绑定了多少个端口,如果到达了最大端口数量限制也会循环。*/
    			rx_lcore_id++;
    
    			if (rx_lcore_id >= RTE_MAX_LCORE) // RTE_MAX_LCORE 宏 64
    				rte_exit(EXIT_FAILURE, "Not enough cores
    "); // 逻辑核心不足
    		}
    		// 跳出循环时,rx_lcore_id 变量存储了一个可用的 lcore id,绑定该端口到这个 lcore
    
    		if (qconf != &lcore_queue_conf[rx_lcore_id]) {
    			/* Assigned a new logical core in the loop above. */
    			qconf = &lcore_queue_conf[rx_lcore_id]; 
    			nb_lcores++;
    			// qconf 是一个指针,指向当前进行配置的 lcore 的,用于存放配置信息的结构体		
    		}
    		qconf->rx_port_list[qconf->n_rx_port] = portid;
    		qconf->n_rx_port++;
    		// 绑定就是在这个核处理的端口列表中加上当前这个端口,然后该核绑定的端口数加 1。
    		printf("Lcore %u: RX port %u
    ", rx_lcore_id, portid);
    	}
    
    	nb_mbufs = RTE_MAX(nb_ports * (nb_rxd + nb_txd + MAX_PKT_BURST +
    		nb_lcores * MEMPOOL_CACHE_SIZE), 8192U); 
    		// mbuf中的元素个数,取 8192 和 (端口数 * (队列长度 * 2 + 一个 Burst 的 pkt 数量 + 逻辑核数 * cache size)) 两者中较大的一个。
    
    	/* create the mbuf pool */
    	// 初始化内存池,用于 rx 队列接收 pkt 用
    	l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", nb_mbufs,
    		MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
    		rte_socket_id());
    	if (l2fwd_pktmbuf_pool == NULL)
    		rte_exit(EXIT_FAILURE, "Cannot init mbuf pool
    ");
    
    	/* Initialise each port */
    	// 端口初始化
    	RTE_ETH_FOREACH_DEV(portid) {
    		struct rte_eth_rxconf rxq_conf; // rx queue 的配置信息
    		struct rte_eth_txconf txq_conf; // tx queue 的配置信息
    		struct rte_eth_conf local_port_conf = port_conf; // 配置端口时使用的配置信息
    		struct rte_eth_dev_info dev_info; // 以太网设备的信息
    
    		/* skip ports that are not enabled */
    		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) {
    			printf("Skipping disabled port %u
    ", portid);
    			continue;
    		}
    		nb_ports_available++;
    
    		/* init port */
    		printf("Initializing port %u... ", portid);
    		fflush(stdout); // 清除写缓冲区,强迫未写入磁盘的内容立即写入
    		rte_eth_dev_info_get(portid, &dev_info); // 获取以太网设备信息
    		if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
    			local_port_conf.txmode.offloads |=
    				DEV_TX_OFFLOAD_MBUF_FAST_FREE; // mbuf fast free,支持快速发包
    		ret = rte_eth_dev_configure(portid, 1, 1, &local_port_conf); // 配置收发队列各 1 条
    		/*本程序中,Rx队列只能有一条,确保一个 lcore 负责轮询一个 port
    		 Tx 队列则可以根据可用的 lcore 数目更改。*/
    
    		if (ret < 0)
    			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u
    ",
    				  ret, portid);
    
    		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
    						       &nb_txd);
    		if (ret < 0)
    			rte_exit(EXIT_FAILURE,
    				 "Cannot adjust number of descriptors: err=%d, port=%u
    ",
    				 ret, portid);
    
    		rte_eth_macaddr_get(portid,&l2fwd_ports_eth_addr[portid]); // 获取设备的MAC地址,写在后一个结构体里
    
    		/* init one RX queue */
    		// 配置 rx 队列
    		fflush(stdout);
    		rxq_conf = dev_info.default_rxconf;
    		rxq_conf.offloads = local_port_conf.rxmode.offloads;
    		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
    					     rte_eth_dev_socket_id(portid),
    					     &rxq_conf,
    					     l2fwd_pktmbuf_pool);
    		if (ret < 0)
    			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u
    ",
    				  ret, portid);
    
    		/* init one TX queue on each port */
    		// 每个 port 配置一条 tx 队列
    		fflush(stdout);
    		txq_conf = dev_info.default_txconf;
    		txq_conf.txq_flags = ETH_TXQ_FLAGS_IGNORE;
    		txq_conf.offloads = local_port_conf.txmode.offloads;
    		ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,
    				rte_eth_dev_socket_id(portid),
    				&txq_conf);
    		if (ret < 0)
    			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u
    ",
    				ret, portid);
    
    		/* Initialize TX buffers */
    		// 为每个端口的 Tx 分配发送缓冲区
    		tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
    				RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
    				rte_eth_dev_socket_id(portid)); // 为 tx buffer 分配空间。
    												// 宏RTE_ETH_TX_BUFFER_SIZE(x) :计算 tx buffer 的 size,参数x是包的个数
    
    		if (tx_buffer[portid] == NULL) 
    			rte_exit(EXIT_FAILURE, "Cannot allocate buffer for tx on port %u
    ",
    					portid);
    
    		rte_eth_tx_buffer_init(tx_buffer[portid], MAX_PKT_BURST); // 初始化 Tx buffer,参数是 buffer 指针和 buffer size。
    
    		/* rte_eth_tx_buffer_set_err_callback() 对于不能被发送的 pkt 配置回调函数。
    		在尝试发送一个 tx buffer 的所有 pkt,遇到问题不能全部成功发送,就会触发设置好的回调函数。
    		默认行为是丢包。如果要其他的行为(例如重传,计数)则需要额外的代码。也有设置好的API例如rte_eth_count_unsent_packet_callback()等,和本函数中用的也是。
    		参数 1. tx_buffer 指针,2.回调函数的指针。3. 回调函数的参数
    		*/
    		ret = rte_eth_tx_buffer_set_err_callback(tx_buffer[portid], 
    				rte_eth_tx_buffer_count_callback, // 丢包,并更新计数器
    				&port_statistics[portid].dropped); // 计数器的指针放到第三个参数
    		if (ret < 0)
    			rte_exit(EXIT_FAILURE,
    			"Cannot set error callback for tx buffer on port %u
    ",
    				 portid);
    
    		/* Start device */
    		// 启用设备
    		ret = rte_eth_dev_start(portid);
    		if (ret < 0)
    			rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u
    ",
    				  ret, portid);
    
    		printf("done: 
    ");
    
    		rte_eth_promiscuous_enable(portid); // 混杂模式
    
    		printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X
    
    ",
    				portid,
    				l2fwd_ports_eth_addr[portid].addr_bytes[0],
    				l2fwd_ports_eth_addr[portid].addr_bytes[1],
    				l2fwd_ports_eth_addr[portid].addr_bytes[2],
    				l2fwd_ports_eth_addr[portid].addr_bytes[3],
    				l2fwd_ports_eth_addr[portid].addr_bytes[4],
    				l2fwd_ports_eth_addr[portid].addr_bytes[5]);
    
    		/* initialize port stats */
    		memset(&port_statistics, 0, sizeof(port_statistics));
    	}
    
    	if (!nb_ports_available) {
    		rte_exit(EXIT_FAILURE,
    			"All available ports are disabled. Please set portmask.
    ");
    	}
    
    	check_all_ports_link_status(l2fwd_enabled_port_mask); // 检查所有链路的状态,可以参考 flow_filtering
    
    	ret = 0;
    	/* launch per-lcore init on every lcore */
    	// 这里就是DPDK的典型执行方法,分配所有 lcore 执行函数
    	rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, NULL, CALL_MASTER);
    	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
    		if (rte_eal_wait_lcore(lcore_id) < 0) {
    			ret = -1;
    			break;
    		}
    	}
    
    	RTE_ETH_FOREACH_DEV(portid) {
    		if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
    			continue;
    		printf("Closing port %d...", portid);
    		rte_eth_dev_stop(portid);
    		rte_eth_dev_close(portid);
    		printf(" Done
    ");
    	}
    	printf("Bye...
    ");
    
    	return ret;
    }
    
    

    二层转发和普通的端口转发有什么区别呢?简单来说有几个:

    特点 L2fwd basicfwd
    端口数量 两者都用端口掩码来指定,L2fwd支持奇数个 只能是偶数个
    lcore数量 多个,每个lcore负责一个port 一个lcore,执行类似repeater的程序
    转发逻辑 转发时会改写MAC地址 只能是 0<-->1,2<-->3 这样的 pair 互相转发
    Tx_buffer 有发包缓存队列,收的包会缓存到发包队列里,一段时间后或者队列满后才会转发 没有发包缓存,Rx收到包后直接Tx出去

    运行情况

    root@ubuntu:/home/chang/dpdk/examples/l2fwd/build# ./l2fwd -l 0-3 -n 4 -- -p 0x3EAL: Detected 8 lcore(s)
    EAL: No free hugepages reported in hugepages-1048576kB
    EAL: Multi-process socket /var/run/.rte_unix
    EAL: Probing VFIO support...
    EAL: PCI device 0000:02:01.0 on NUMA socket -1
    EAL:   Invalid NUMA socket, default to 0
    EAL:   probe driver: 8086:100f net_e1000_em
    EAL: PCI device 0000:02:02.0 on NUMA socket -1
    EAL:   Invalid NUMA socket, default to 0
    EAL:   probe driver: 8086:100f net_e1000_em
    EAL: PCI device 0000:02:03.0 on NUMA socket -1
    EAL:   Invalid NUMA socket, default to 0
    EAL:   probe driver: 8086:100f net_e1000_em
    EAL: PCI device 0000:02:04.0 on NUMA socket -1
    EAL:   Invalid NUMA socket, default to 0
    EAL:   probe driver: 8086:100f net_e1000_em
    MAC updating enabled
    Lcore 0: RX port 0
    Lcore 1: RX port 1
    Initializing port 0... done: 
    Port 0, MAC address: 00:0C:29:F7:4D:25
    
    Initializing port 1... done: 
    Port 1, MAC address: 00:0C:29:F7:4D:2F
    
    
    Checking link statusdone
    Port0 Link Up. Speed 1000 Mbps - full-duplex
    Port1 Link Up. Speed 1000 Mbps - full-duplex
    L2FWD: entering main loop on lcore 1
    L2FWD:  -- lcoreid=1 portid=1
    L2FWD: lcore 3 has nothing to do
    L2FWD: entering main loop on lcore 0
    L2FWD:  -- lcoreid=0 portid=0
    
    
    
    Port statistics ====================================
    Statistics for port 0 ------------------------------
    Packets sent:                  2152346
    Packets received:              2166674
    Packets dropped:                     0
    Statistics for port 1 ------------------------------
    Packets sent:                  2166674
    Packets received:              2152371
    Packets dropped:                     0
    Aggregate statistics ===============================
    Total packets sent:            4319020
    Total packets received:        4319045
    Total packets dropped:               0
    ====================================================
    

    用 wireshark 抓下包:

    可以看到经过端口转发的包的目的MAC地址被程序改变了。

    但是改变了目的MAC地址,自然无法通信。所以这个程序还是设置成测试速率用。如果把修改目的MAC地址的那一行代码注释掉,就可以正常通信。

    Sample guide 里有一句话说:The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK. 所以这个程序也是非常亲民的=。=

    reference

    作为典型应用,搜索能搜到很多相关代码阅读的博客。

    参考了:https://blog.csdn.net/yangye2014/article/details/78064634?locationNum=6&fps=1

  • 相关阅读:
    git 操作
    vim使用指北 ---- Multiple Windows in Vim
    Unity 异步网络方案 IOCP Socket + ThreadSafe Queue
    unity 四元数, 两行等价的代码
    golang的项目结构 相关知识
    stencil in unity3d
    一段tcl代码
    16_游戏编程模式ServiceLocator 服务定位
    15_游戏编程模式EventQueue
    14_ Component 游戏开发组件模式
  • 原文地址:https://www.cnblogs.com/ZCplayground/p/9360798.html
Copyright © 2020-2023  润新知