• DPDK flow_classify 源码阅读


    代码部分

    /* SPDX-License-Identifier: BSD-3-Clause
     * Copyright(c) 2017 Intel Corporation
     */
    
    #include <stdint.h>
    #include <inttypes.h>
    #include <getopt.h>
    
    #include <rte_eal.h>
    #include <rte_ethdev.h>
    #include <rte_cycles.h>
    #include <rte_lcore.h>
    #include <rte_mbuf.h>
    #include <rte_flow.h>
    #include <rte_flow_classify.h>
    #include <rte_table_acl.h>
    
    #define RX_RING_SIZE 1024
    #define TX_RING_SIZE 1024
    
    #define NUM_MBUFS 8191
    #define MBUF_CACHE_SIZE 250
    #define BURST_SIZE 32
    
    #define MAX_NUM_CLASSIFY 30
    #define FLOW_CLASSIFY_MAX_RULE_NUM 91
    #define FLOW_CLASSIFY_MAX_PRIORITY 8
    #define FLOW_CLASSIFIER_NAME_SIZE 64
    
    #define COMMENT_LEAD_CHAR	('#')
    #define OPTION_RULE_IPV4	"rule_ipv4"
    #define RTE_LOGTYPE_FLOW_CLASSIFY	RTE_LOGTYPE_USER3
    #define flow_classify_log(format, ...) 
    		RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
    
    #define uint32_t_to_char(ip, a, b, c, d) do {
    		*a = (unsigned char)(ip >> 24 & 0xff);
    		*b = (unsigned char)(ip >> 16 & 0xff);
    		*c = (unsigned char)(ip >> 8 & 0xff);
    		*d = (unsigned char)(ip & 0xff);
    	} while (0)
    
    enum {
    	CB_FLD_SRC_ADDR,     // 0
    	CB_FLD_DST_ADDR,     // 1
    	CB_FLD_SRC_PORT,	 // 2
    	CB_FLD_SRC_PORT_DLM, // 3 
    	CB_FLD_SRC_PORT_MASK,// 4 
    	CB_FLD_DST_PORT,	 // 5 
    	CB_FLD_DST_PORT_DLM, // 6
    	CB_FLD_DST_PORT_MASK,// 7 
    	CB_FLD_PROTO,		 // 8
    	CB_FLD_PRIORITY,	 // 9 
    	CB_FLD_NUM,			 // 10 
    };
    
    static struct{
    	const char *rule_ipv4_name;
    } parm_config; // 用于文件访问的。
    
    const char cb_port_delim[] = ":";
    
    static const struct rte_eth_conf port_conf_default = {
    	.rxmode = {
    		.max_rx_pkt_len = ETHER_MAX_LEN,
    		.ignore_offload_bitfield = 1,
    	},
    };
    
    struct flow_classifier { 
    	struct rte_flow_classifier *cls;
    };
    // flow_classifer 的结构要看 sample guide
    
    /*
    struct rte_flow_classifier {
    
        // classifier的参数,要 create() 时传入结构体。
        char name[RTE_FLOW_CLASSIFIER_MAX_NAME_SZ];
        int socket_id;
    
        // 其余的内部字段
        // n tuple 过滤器,也就是流规则的匹配项目了。
        struct rte_eth_ntuple_filter ntuple_filter;
    
        // tables
        struct rte_cls_table tables[RTE_FLOW_CLASSIFY_TABLE_MAX];
        uint32_t table_mask;
        uint32_t num_tables;
    
        uint16_t nb_pkts;
        struct rte_flow_classify_table_entry
            *entries[RTE_PORT_IN_BURST_SIZE_MAX];
    } __rte_cache_aligned;
    */
    
    struct flow_classifier_acl {
    	struct flow_classifier cls;
    } __rte_cache_aligned;
    
    /* ACL field definitions for IPv4 5 tuple rule */
    
    enum {
    	PROTO_FIELD_IPV4, // 0
    	SRC_FIELD_IPV4,   // 1
    	DST_FIELD_IPV4,   // 2
    	SRCP_FIELD_IPV4,  // 3
    	DSTP_FIELD_IPV4,  // 4 
    	NUM_FIELDS_IPV4   // 5
    };
    
    enum {
    	PROTO_INPUT_IPV4,
    	SRC_INPUT_IPV4,
    	DST_INPUT_IPV4,
    	SRCP_DESTP_INPUT_IPV4
    };
    
    
    /* 数据结构 rte_acl_field_def:ACL 访问控制表的字段的定义
    ACL规则中的每个字段都有一个关联定义。有五个,分别是:
    字段的类型 type,
    字段的字节数大小 size,
    字段的索引(指示哪一个字段)field_index 一个0开始的值,用来指定字段在规则内部的位置,0~n-1表示n个字段。
    输入索引 input_index(0-N)  所有输入字段,除了第一个,其他必须以4个连续字节分组,这个input_index就是来指定字段在那个组
    偏移量offset 定义了字段的偏移量,为查找指定从缓冲区的起始位置的偏移。
    */
    
    /* 
    rule “规则” 有一些独有规则:
    	1. 规则定义的第一个字段必须是一个字节的长度
    	2. 之后的字段必须以4个连续的字节分组
    	这主要是为性能考虑,查找函数处理第一个输入字节做为这个流的设置的一部分,然后这查找函数的内部循环被展开来同时处理4字节的输入。
    */
    
    static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { // 共 5 个字段,每个字段都要有一个关联的五个定义
    	/* first input field - always one byte long. */ // 第一个字段 1个字节
    	{
    		.type = RTE_ACL_FIELD_TYPE_BITMASK, // type 字段的类型,有3种选项,见https://www.cnblogs.com/danxi/p/6650757.html
    		.size = sizeof(uint8_t), // 1个字节
    		.field_index = PROTO_FIELD_IPV4, // 两个 index 都是 enum
    		.input_index = PROTO_INPUT_IPV4,
    		.offset = sizeof(struct ether_hdr) + // todo :数据结构
    			offsetof(struct ipv4_hdr, next_proto_id),
    	},
    	/* next input field (IPv4 source address) - 4 consecutive bytes. */
    	{   // 第二个字段 源IP地址
    		/* rte_flow uses a bit mask for IPv4 addresses */
    		.type = RTE_ACL_FIELD_TYPE_BITMASK, 
    		.size = sizeof(uint32_t),
    		.field_index = SRC_FIELD_IPV4,
    		.input_index = SRC_INPUT_IPV4,
    		.offset = sizeof(struct ether_hdr) +
    			offsetof(struct ipv4_hdr, src_addr),
    	},
    	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
    	{   // 第三个字段 目的IP地址
    		/* rte_flow uses a bit mask for IPv4 addresses */
    		.type = RTE_ACL_FIELD_TYPE_BITMASK,
    		.size = sizeof(uint32_t),
    		.field_index = DST_FIELD_IPV4,
    		.input_index = DST_INPUT_IPV4,
    		.offset = sizeof(struct ether_hdr) +
    			offsetof(struct ipv4_hdr, dst_addr),
    	},
    	/*
    	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
    	 * They share the same input index.
    	 */
    	// 接下来的 两个端口号 才组成一个 4 字节,所以共享同样的一个 input index
    	{
    		/* rte_flow uses a bit mask for protocol ports */
    		.type = RTE_ACL_FIELD_TYPE_BITMASK, 
    		.size = sizeof(uint16_t),
    		.field_index = SRCP_FIELD_IPV4,
    		.input_index = SRCP_DESTP_INPUT_IPV4,
    		.offset = sizeof(struct ether_hdr) + // (todo)
    			sizeof(struct ipv4_hdr) +
    			offsetof(struct tcp_hdr, src_port),
    	},
    	{
    		/* rte_flow uses a bit mask for protocol ports */
    		.type = RTE_ACL_FIELD_TYPE_BITMASK,
    		.size = sizeof(uint16_t),
    		.field_index = DSTP_FIELD_IPV4,
    		.input_index = SRCP_DESTP_INPUT_IPV4,
    		.offset = sizeof(struct ether_hdr) +
    			sizeof(struct ipv4_hdr) +
    			offsetof(struct tcp_hdr, dst_port),
    	},
    };
    
    /* flow classify data */
    static int num_classify_rules; // rules数组的下标
    static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; // rules 数组
    static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;  // stats 结构体 (todo)
    static struct rte_flow_classify_stats classify_stats = { // 有计数功能
    		.stats = (void **)&ntuple_stats
    };
    
    /* parameters for rte_flow_classify_validate and
     * rte_flow_classify_table_entry_add functions
     */
    
    /* rte_flow_item 四个字段:
    1. type,是 enum 定义。见 rte_flow.h:http://doc.dpdk.org/api/rte__flow_8h_source.html
    2. spec,指向相关项类型结构的有效指针,在许多情况下,可以设置成 NULL以请求广泛(非特定)匹配。在此情况下,last 和 mask 也要设置成 NULL
    3. last,可以指向相同类型的结构,以定义包含范围。
    4. Mask,是在解释spec和last的内容之前应用的简单位掩码
    */
    static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
    	0, 0, 0 };
    static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
    	0, 0, 0 };
    
    /* sample actions:
     * "actions count / end"
     */
    struct rte_flow_query_count count = { // 计数器查询的结构体
    	.reset = 1, // Reset counters after query
    	.hits_set = 1, // 启用 hits 字段
    	.bytes_set = 1, // 启用 bytes 字段
    	.hits = 0, // Number of hits for this rule
    	.bytes = 0, // Number of bytes through this rule
    };
    static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, &count};
    static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; // 本程序就用到了计数和end 两种 action
    
    static struct rte_flow_action actions[2]; 
    // rte_flow_action 见 programmers’ guides 的第九章 :http://doc.dpdk.org/guides/prog_guide/rte_flow.html
    // actions 数组代表当 pkt 被 pattern 匹配时要执行的一系列操作。
    // 在这个例子里,数组长度为二,actions[0] 就是计数,actions[1] 就是用来提示结尾。
    
    // rte_flow_action的具体定义不清楚
    // 估计第一个字段是 enum rte_flow_action_type ,具体的 enum 定义见:http://doc.dpdk.org/api/rte__flow_8h.html#a78f0386e683cfc491462a771df8b971a
    // 第二个字段计数器查询的结构体
    
    
    /* sample attributes */
    static struct rte_flow_attr attr;
    /* rte_flow_attr 代表一条流规则的属性,文档:http://doc.dpdk.org/api/structrte__flow__attr.html
    字段:
    uint32_t 	group       组号
    uint32_t 	priority	同组内的优先级
    uint32_t 	ingress:1	规则适用于入口流量
    uint32_t 	egress:1	规则适用于出口流量
    uint32_t 	transfer:1	todo
    uint32_t 	reserved:29 保留,必须为零。
    */
    
    /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
    
    /*
     * Initializes a given port using global settings and with the RX buffers
     * coming from the mbuf_pool passed as a parameter.
     */
    // 端口初始化的代码与 basicfw 一模一样
    static inline int
    port_init(uint8_t port, struct rte_mempool *mbuf_pool)
    {
    	struct rte_eth_conf port_conf = port_conf_default;
    	struct ether_addr addr;
    	const uint16_t rx_rings = 1, tx_rings = 1;
    	int retval;
    	uint16_t q;
    	struct rte_eth_dev_info dev_info;
    	struct rte_eth_txconf txconf;
    
    	if (!rte_eth_dev_is_valid_port(port))
    		return -1;
    
    	rte_eth_dev_info_get(port, &dev_info);
    	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
    		port_conf.txmode.offloads |=
    			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
    
    	/* Configure the Ethernet device. */
    	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
    	if (retval != 0)
    		return retval;
    
    	/* Allocate and set up 1 RX queue per Ethernet port. */
    	for (q = 0; q < rx_rings; q++) {
    		retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
    				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
    		if (retval < 0)
    			return retval;
    	}
    
    	txconf = dev_info.default_txconf;
    	txconf.txq_flags = ETH_TXQ_FLAGS_IGNORE;
    	txconf.offloads = port_conf.txmode.offloads;
    	/* Allocate and set up 1 TX queue per Ethernet port. */
    	for (q = 0; q < tx_rings; q++) {
    		retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
    				rte_eth_dev_socket_id(port), &txconf);
    		if (retval < 0)
    			return retval;
    	}
    
    	/* Start the Ethernet port. */
    	retval = rte_eth_dev_start(port);
    	if (retval < 0)
    		return retval;
    
    	/* Display the port MAC address. */
    	rte_eth_macaddr_get(port, &addr);
    	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
    			   " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "
    ",
    			port,
    			addr.addr_bytes[0], addr.addr_bytes[1],
    			addr.addr_bytes[2], addr.addr_bytes[3],
    			addr.addr_bytes[4], addr.addr_bytes[5]);
    
    	/* Enable RX in promiscuous mode for the Ethernet device. */
    	rte_eth_promiscuous_enable(port);
    
    	return 0;
    }
    
    /*
     * The lcore main. This is the main thread that does the work, reading from
     * an input port classifying the packets and writing to an output port.
     */
    static __attribute__((noreturn)) void
    lcore_main(struct flow_classifier *cls_app)
    {
    	uint16_t port;
    	int ret;
    	int i = 0;
    
    	// 测试:删除一条规则
    	ret = rte_flow_classify_table_entry_delete(cls_app->cls,
    			rules[7]);
    	if (ret)
    		printf("table_entry_delete failed [7] %d
    
    ", ret);
    	else
    		printf("table_entry_delete succeeded [7]
    
    ");
    
    	/*
    	 * Check that the port is on the same NUMA node as the polling thread
    	 * for best performance.
    	 */
    	RTE_ETH_FOREACH_DEV(port)
    		if (rte_eth_dev_socket_id(port) > 0 &&
    			rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
    			printf("
    
    ");
    			printf("WARNING: port %u is on remote NUMA node
    ",
    			       port);
    			printf("to polling thread.
    ");
    			printf("Performance will not be optimal.
    ");
    		}
    	printf("
    Core %u forwarding packets. ", rte_lcore_id());
    	printf("[Ctrl+C to quit]
    ");
    
    	/* Run until the application is quit or killed. */
    	for (;;) {
    		/*
    		 * Receive packets on a port, **classify them** and forward them
    		 * on the paired port.
    		 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
    		 */
    		RTE_ETH_FOREACH_DEV(port) {
    			/* Get burst of RX packets, from first port of pair. */
    			struct rte_mbuf *bufs[BURST_SIZE];
    			const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
    					bufs, BURST_SIZE); // 收包
    
    			if (unlikely(nb_rx == 0))
    				continue;
    
    			for (i = 0; i < MAX_NUM_CLASSIFY; i++) { 
    				if (rules[i]) {  // 对classifier里的每条规则(用一个数组来保存插入成功时返回的rule指针)
    
    				/* rte_flow_classifier_query(),查看burst中是否有任何数据包与表中的一条流规则匹配。
    				参数:流分类器句柄、要处理的数据包的mbuf
    						一个burst的数据包数量、要查询的规则、查询的stat */
    					ret = rte_flow_classifier_query(
    						cls_app->cls, 
    						bufs, nb_rx, rules[i], 
    						&classify_stats);
    					if (ret) 
    						printf(
    							"rule [%d] query failed ret [%d]
    
    ",
    							i, ret);
    
    					else { // 返回 0 代表有match
    						printf(
    						"rule[%d] count=%"PRIu64"
    ",
    						i, ntuple_stats.counter1);
    
    						printf("proto = %d
    ",
    						ntuple_stats.ipv4_5tuple.proto);
    					}
    				}
    			}
    
    			/* Send burst of TX packets, to second port of pair. */
    			const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
    					bufs, nb_rx);
    
    			/* Free any unsent packets. */
    			if (unlikely(nb_tx < nb_rx)) {
    				uint16_t buf;
    
    				for (buf = nb_tx; buf < nb_rx; buf++)
    					rte_pktmbuf_free(bufs[buf]);
    			}
    		}
    	}
    }
    
    /*
     * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
     * Expected format:
     * <src_ipv4_addr>'/'<masklen> <space> 
     * <dst_ipv4_addr>'/'<masklen> <space> 
     * <src_port> <space> ":" <src_port_mask> <space> 
     * <dst_port> <space> ":" <dst_port_mask> <space> 
     * <proto>'/'<proto_mask> <space> 
     * <priority>
     */
    
    static int
    get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
    		char dlm)
    {
    	unsigned long val;
    	char *end;
    
    	errno = 0;
    	val = strtoul(*in, &end, base);
    
    	/*  unsigned long int strtoul(const char *str, char **endptr, int base) 
    
    	把参数 str 所指向的字符串根据给定的 base 转换为一个无符号长整数(unsigned long int 型)。
    
    	str -- 要转换为无符号长整数的字符串。
    
    	endptr -- 对类型为 char* 的对象的引用,其值会由函数设置为 str 中数值后的下一个字符。
    	(end 会指向点分十进制中的下一个点)
    
    	base -- 基数,必须介于 2 和 36(包含)之间,或者是特殊值 0。
    	当base = 0,自动判断字符串的类型,并按10进制输出,例如"0xa", 就会把字符串当做16进制处理,输出为 10。
    	参考:http://www.runoob.com/cprogramming/c-function-strtoul.html
    		  https://blog.csdn.net/chuhongcai/article/details/52032926
    	*/
    
    	if (errno != 0 || end[0] != dlm || val > lim) 
    		return -EINVAL;
    	*fd = (uint32_t)val;
    	*in = end + 1; // 例如 2.2.2.3 会依次转换 2 2 2 3
    	return 0;
    }
    
    static int
    parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
    {
    	// in: 2.2.2.3/24
    
    	uint32_t a, b, c, d, m;
    
    	// 这四个if是判断IP地址的每个点分十进制是否小于255(UINT8_MAX)
    	if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
    		return -EINVAL;
    	if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
    		return -EINVAL;
    	if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
    		return -EINVAL;
    	if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
    		return -EINVAL;
    
    	// 后缀要小于32
    	if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
    		return -EINVAL;
    
    	addr[0] = IPv4(a, b, c, d);
    	mask_len[0] = m;
    	return 0;
    }
    
    static int
    parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
    // 将 txt 中一行输入,转换成一个 rte_eth_ntuple_filter 结构体。
    {
    	int i, ret;
    	char *s, *sp, *in[CB_FLD_NUM];
    	static const char *dlm = " 	
    ";
    	int dim = CB_FLD_NUM; // 10
    	uint32_t temp;
    
    	s = str;
    	for (i = 0; i != dim; i++, s = NULL) {
    		in[i] = strtok_r(s, dlm, &sp); 
    		// linux下的字符串切割函数:strtok_r
    		/* char *strtok_r(char *str, const char *delim, char **saveptr);
    		在str中,返回由delim指定的分界符分开str的单词。
    		参考链接:https://blog.csdn.net/hustfoxy/article/details/23473805
    		*/
    		if (in[i] == NULL)
    			return -EINVAL;
    	}
    	/* 一条 rule 占一行,格式,以及分词后的在in数组内的下标如下:
    	#源IP/前缀  目的IP/前缀 源端口号 : 掩码 目的端口号 : 掩码 协议/掩码 优先级
    	2.2.2.3/24  2.2.2.7/24 32 : 0xffff    33 : 0xffff      17/0xff  0
    	0           1          2  3 4         5  6 7           8        9  ← in数组下标	
    	*/
    
    	/* rte_eth_ntuple_filter  的字段:
    	uint16_t 	flags
    	uint32_t 	dst_ip			Destination IP address in big endian.
    	uint32_t 	dst_ip_mask
    	uint32_t 	src_ip			in big endian.
    	uint32_t 	src_ip_mask
    	uint16_t 	dst_port		Destination port in big endian.
    	uint16_t 	dst_port_mask
    	uint16_t 	src_port		in big endian.
    	uint16_t 	src_port_mask
    	uint8_t 	proto			L4 protocol.
    	uint8_t 	proto_mask
    	uint8_t 	tcp_flags		only meaningful when the proto is TCP.
    	uint16_t 	priority 		seven levels (001b-111b), 111b is highest, used when more than one filter matches.
    	uint16_t 	queue			Queue assigned to when match
    	 */
    
    	ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
    			&ntuple_filter->src_ip,
    			&ntuple_filter->src_ip_mask);  // 解析 src_ip 得到IP地址和掩码,放到 ntuple_filter的对应字段里
    	if (ret != 0) {
    		flow_classify_log("failed to read source address/mask: %s
    ",
    			in[CB_FLD_SRC_ADDR]);
    		return ret;
    	}
    
    	ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], // 解析 dst_ip
    			&ntuple_filter->dst_ip,
    			&ntuple_filter->dst_ip_mask);
    	if (ret != 0) {
    		flow_classify_log("failed to read source address/mask: %s
    ",
    			in[CB_FLD_DST_ADDR]);
    		return ret;
    	}
    
    	if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
    		return -EINVAL; // 源端口号字符串转 unsigned long ,验证不能大于16位无符号数的最大值。
    	ntuple_filter->src_port = (uint16_t)temp;
    
    	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
    			sizeof(cb_port_delim)) != 0)  // 检查分隔符是否为: 不然是格式错误。
    		return -EINVAL;
    
    	if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
    		return -EINVAL; // 源端口号掩码
    	ntuple_filter->src_port_mask = (uint16_t)temp;
    
    	if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
    		return -EINVAL; // 目的端口号
    	ntuple_filter->dst_port = (uint16_t)temp;
    
    	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
    			sizeof(cb_port_delim)) != 0)
    		return -EINVAL;
    
    	if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
    		return -EINVAL; // 目的端口号掩码
    	ntuple_filter->dst_port_mask = (uint16_t)temp;
    
    	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
    		return -EINVAL; // 协议号
    	ntuple_filter->proto = (uint8_t)temp;
    
    	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
    		return -EINVAL; // 协议号掩码
    	ntuple_filter->proto_mask = (uint8_t)temp;
    
    	if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
    		return -EINVAL; // 优先级
    	ntuple_filter->priority = (uint16_t)temp;
    	if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
    		ret = -EINVAL;
    
    	return ret;
    }
    
    /* Bypass comment and empty lines */
    static inline int
    is_bypass_line(char *buff)
    {
    	int i = 0;
    
    	/* comment line */
    	if (buff[0] == COMMENT_LEAD_CHAR)
    		return 1;
    	/* empty line */
    	while (buff[i] != '') {
    		if (!isspace(buff[i]))
    			return 0;
    		i++;
    	}
    	return 1;
    }
    
    static uint32_t
    convert_depth_to_bitmask(uint32_t depth_val)
    {
    	uint32_t bitmask = 0;
    	int i, j;
    
    	for (i = depth_val, j = 0; i > 0; i--, j++)
    		bitmask |= (1 << (31 - j));
    	return bitmask;
    }
    
    static int
    add_classify_rule(struct rte_eth_ntuple_filter *pattern_ipv4_5tuple,
    		struct flow_classifier *cls_app) 
    		// 对 rte_flow_classify_table_entry_add() 的一层封装,主要是设定好参数,从rte_eth_ntuple_filter 转换成 flow_item
    {
    	int ret = -1;
    	int key_found;
    	struct rte_flow_error error;
    	/* rte_flow_item: ACL 规则的详细内容。
    	会从最低协议层开始堆叠flow_item来形成一个匹配模式。必须由 end_item 结尾。
    	*/
    	struct rte_flow_item_ipv4 ipv4_spec; // (todo) rte_flow_item . Matches an IPv4 header.
    	struct rte_flow_item_ipv4 ipv4_mask;
    
    	struct rte_flow_item ipv4_udp_item;
    	struct rte_flow_item ipv4_tcp_item;
    	struct rte_flow_item ipv4_sctp_item;
    
    	struct rte_flow_item_udp udp_spec;
    	struct rte_flow_item_udp udp_mask;
    	struct rte_flow_item udp_item;
    
    	struct rte_flow_item_tcp tcp_spec;
    	struct rte_flow_item_tcp tcp_mask;
    	struct rte_flow_item tcp_item;
    
    	struct rte_flow_item_sctp sctp_spec;
    	struct rte_flow_item_sctp sctp_mask;
    	struct rte_flow_item sctp_item;
    
    	struct rte_flow_item pattern_ipv4_5tuple[4]; // ntuple_filter 结构体 --> rte_flow_item 结构体数组
    	struct rte_flow_classify_rule *rule;
    
    	uint8_t ipv4_proto;
    
    	if (num_classify_rules >= MAX_NUM_CLASSIFY) {
    		printf(
    			"
    INFO:  classify rule capacity %d reached
    ",
    			num_classify_rules);
    		return ret;
    	}
    
    	/* set up parameters for validate and add */
    	memset(&ipv4_spec, 0, sizeof(ipv4_spec));
    	ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; // 协议号
    	ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; // 源IP
    	ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; // 目的IP
    	ipv4_proto = ipv4_spec.hdr.next_proto_id; 
    	// 把这三个参数从ntuple_filter结构体提取到 rte_flow_item_ipv4 的一个专门的结构体:ipv4_spec 
    
    	memset(&ipv4_mask, 0, sizeof(ipv4_mask));
    	ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; // 协议掩码
    	ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
    	ipv4_mask.hdr.src_addr =
    		convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
    	ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; // 源IP地址的掩码
    	ipv4_mask.hdr.dst_addr =
    		convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); // 目的IP地址的掩码
    	// 把这三个参数从ntuple_filter结构体提取到 rte_flow_item_ipv4 的一个专门的结构体 :ipv4_mask
    
    	switch (ipv4_proto) { // 根据协议设置L3、L4的item
    	case IPPROTO_UDP: // UDP
    		ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
    		ipv4_udp_item.spec = &ipv4_spec;
    		ipv4_udp_item.mask = &ipv4_mask;
    		ipv4_udp_item.last = NULL;
    
    		udp_spec.hdr.src_port = ntuple_filter->src_port;
    		udp_spec.hdr.dst_port = ntuple_filter->dst_port;
    		udp_spec.hdr.dgram_len = 0;
    		udp_spec.hdr.dgram_cksum = 0;
    
    		udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
    		udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
    		udp_mask.hdr.dgram_len = 0;
    		udp_mask.hdr.dgram_cksum = 0;
    
    		udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
    		udp_item.spec = &udp_spec;
    		udp_item.mask = &udp_mask;
    		udp_item.last = NULL;
    
    		attr.priority = ntuple_filter->priority;
    		pattern_ipv4_5tuple[1] = ipv4_udp_item; // L3 item 是 ipv4_upd
    		pattern_ipv4_5tuple[2] = udp_item; // L4 item 是 udp_item
    		break;
    	case IPPROTO_TCP: // TCP
    		ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
    		ipv4_tcp_item.spec = &ipv4_spec;
    		ipv4_tcp_item.mask = &ipv4_mask;
    		ipv4_tcp_item.last = NULL;
    
    		memset(&tcp_spec, 0, sizeof(tcp_spec));
    		tcp_spec.hdr.src_port = ntuple_filter->src_port;
    		tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
    
    		memset(&tcp_mask, 0, sizeof(tcp_mask));
    		tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
    		tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
    
    		tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
    		tcp_item.spec = &tcp_spec;
    		tcp_item.mask = &tcp_mask;
    		tcp_item.last = NULL;
    
    		attr.priority = ntuple_filter->priority;
    		pattern_ipv4_5tuple[1] = ipv4_tcp_item; // L3 item 是 ipv4_tcp
    		pattern_ipv4_5tuple[2] = tcp_item; // L4 item 是 tcp_item
    		break;
    	case IPPROTO_SCTP:
    		ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
    		ipv4_sctp_item.spec = &ipv4_spec;
    		ipv4_sctp_item.mask = &ipv4_mask;
    		ipv4_sctp_item.last = NULL;
    
    		sctp_spec.hdr.src_port = ntuple_filter->src_port;
    		sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
    		sctp_spec.hdr.cksum = 0;
    		sctp_spec.hdr.tag = 0;
    
    		sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
    		sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
    		sctp_mask.hdr.cksum = 0;
    		sctp_mask.hdr.tag = 0;
    
    		sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
    		sctp_item.spec = &sctp_spec;
    		sctp_item.mask = &sctp_mask;
    		sctp_item.last = NULL;
    
    		attr.priority = ntuple_filter->priority;
    		pattern_ipv4_5tuple[1] = ipv4_sctp_item;
    		pattern_ipv4_5tuple[2] = sctp_item;
    		break;
    	default:
    		return ret;
    	}
    
    	attr.ingress = 1; // rules 适用于入口流量
    	
    	pattern_ipv4_5tuple[0] = eth_item;// L2 item,放在pattern_ipv4_5tuple[0],一定是eth_item
    	// L3 item 放在数组下标1,L4 item放在数组下标2
    	pattern_ipv4_5tuple[3] = end_item; // 最后一个 item 一定要用 end_item 结尾。
    
    	actions[0] = count_action; // 流匹配的动作是 计数
    	actions[1] = end_action; // (terminated by the END pattern item)
    
    	/* Validate and add rule */
    	/* 验证这条规则的有效性
    	参数:
    	1. classifer 指针
    	2. attr 指针,流规则的属性,详细内容见上。
    	3. rte_flow_item 结构体数组(terminated by the END pattern item),也就是 ACL 规则的详细内容
    	4. rte_flow_action 结构体数组(terminated by the END pattern item),表示流规则的动作,比如QUEUE, DROP, END等等,
    	5. struct rte_flow_error,出错时存放信息。
    	*/
    	ret = rte_flow_classify_validate(cls_app->cls, &attr,
    			pattern_ipv4_5tuple, actions, &error);
    	if (ret) { // 成功时返回 0 
    		printf("table entry validate failed ipv4_proto = %u
    ",
    			ipv4_proto);
    		return ret;
    	}
    
    	// 调用 rte_flow_classify_table_entry_add() 将规则添加到 rte_flow_classifier 对象中的 table。
    	/* 五个参数
    		1. classifier 的指针。
    		2. attr 指针。
    		3. rte_flow_item 结构体数组,也就是 ACL 规则的详细内容。
    		4. rte_flow_action 结构体数组,表示流规则的动作。
    		5. 一个int指针,如果规则已经存在则返回1,否则返回0。
    		6. 仅出错时存放信息。
    	*/
    	rule = rte_flow_classify_table_entry_add(
    			cls_app->cls, &attr, pattern_ipv4_5tuple,
    			actions, &key_found, &error);
    	if (rule == NULL) { // 添加成功时返回的是rule的有效句柄,否则为NULL
    		printf("table entry add failed ipv4_proto = %u
    ",
    			ipv4_proto);
    		ret = -1;
    		return ret;
    	}
    
    	rules[num_classify_rules] = rule; // 将rule存放在一个数组里,方便删除等操作
    	num_classify_rules++;
    	return 0;
    }
    
    static int
    add_rules(const char *rule_path, struct flow_classifier *cls_app) 
    // 封装一层,主要是文件操作,把txt中的一行解析成 rte_eth_ntuple_filter 结构体
    {
    	FILE *fh;
    	char buff[LINE_MAX];
    	unsigned int i = 0;
    	unsigned int total_num = 0;
    	struct rte_eth_ntuple_filter ntuple_filter; // 用于定义n-tuple过滤器条目的结构体
    	int ret;
    
    	fh = fopen(rule_path, "rb"); // 打开 ipv4_rules_file.txt
    	if (fh == NULL)
    		rte_exit(EXIT_FAILURE, "%s: fopen %s failed
    ", __func__,
    			rule_path);
    
    	ret = fseek(fh, 0, SEEK_SET); // 设置文件指针fh的位置指向文件开头
    	if (ret) // 成功,返回0
    		rte_exit(EXIT_FAILURE, "%s: fseek %d failed
    ", __func__,
    			ret);
    
    	i = 0;
    	while (fgets(buff, LINE_MAX, fh) != NULL) { // 读取一行内容
    		i++;
    
    		if (is_bypass_line(buff)) // 跳过空行 or 以井号开头的注释
    			continue;
    
    		if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { // 有最大规则数量(行数)限制
    			printf("
    INFO: classify rule capacity %d reached
    ",
    				total_num);
    			break;
    		}
    
    		if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) // 规则的 parser 解析txt的一行输入,存放到ntuple_filter结构体里
    			rte_exit(EXIT_FAILURE,
    				"%s Line %u: parse rules error
    ",
    				rule_path, i);
    
    		if (add_classify_rule(&ntuple_filter, cls_app) != 0) // 添加这条五元组规则到 ACL 中
    			rte_exit(EXIT_FAILURE, "add rule error
    ");
    
    		total_num++;
    	}
    
    	fclose(fh);
    	return 0;
    }
    
    /* display usage */
    static void
    print_usage(const char *prgname)
    {
    	printf("%s usage:
    ", prgname);
    	printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
    	printf("specify the ipv4 rules file.
    ");
    	printf("Each rule occupies one line in the file.
    ");
    }
    
    /* Parse the argument given in the command line of the application */
    // 解析执行 flow_classify 的命令行参数
    static int
    parse_args(int argc, char **argv)
    {
    	int opt, ret;
    	char **argvopt;
    	int option_index;
    	char *prgname = argv[0];
    	static struct option lgopts[] = {
    		{OPTION_RULE_IPV4, 1, 0, 0},
    		{NULL, 0, 0, 0}
    	};
    
    	argvopt = argv;
    
    	while ((opt = getopt_long(argc, argvopt, "",
    				lgopts, &option_index)) != EOF) {
    
    		switch (opt) {
    		/* long options */
    		case 0:
    			if (!strncmp(lgopts[option_index].name,
    					OPTION_RULE_IPV4,
    					sizeof(OPTION_RULE_IPV4)))
    				parm_config.rule_ipv4_name = optarg;
    			break;
    		default:
    			print_usage(prgname);
    			return -1;
    		}
    	}
    
    	if (optind >= 0)
    		argv[optind-1] = prgname;
    
    	ret = optind-1;
    	optind = 1; /* reset getopt lib */
    	return ret;
    }
    
    /*
     * The main function, which does initialization and calls the lcore_main
     * function.
     */
    int
    main(int argc, char *argv[])
    {
    	struct rte_mempool *mbuf_pool;
    	uint8_t nb_ports;
    	uint16_t portid;
    	int ret;
    	int socket_id;
    
    	// 以下可以在 dpdk api data struct 中查看
    	struct rte_table_acl_params table_acl_params; // ACL table 的参数
    	struct rte_flow_classify_table_params cls_table_params; // Parameters for table creation
    	struct flow_classifier *cls_app;  // 分流器
    	// 分流器的内部结构要见https://doc.dpdk.org/guides/prog_guide/flow_classify_lib.html#classifier-creation
    	
    	struct rte_flow_classifier_params cls_params; // classifier 的参数
    	uint32_t size;
    
    	/* Initialize the Environment Abstraction Layer (EAL). */
    	ret = rte_eal_init(argc, argv); // 初始化 EAL
    	if (ret < 0)
    		rte_exit(EXIT_FAILURE, "Error with EAL initialization
    ");
    
    	argc -= ret;
    	argv += ret;
    
    	/* parse application arguments (after the EAL ones) */
    	ret = parse_args(argc, argv); // 解析 flow_classify 的命令行参数
    	if (ret < 0)
    		rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters
    ");
    
    	/* Check that there is an even number of ports to send/receive on. */
    	nb_ports = rte_eth_dev_count(); // 网口数目必须是偶数
    	if (nb_ports < 2 || (nb_ports & 1))
    		rte_exit(EXIT_FAILURE, "Error: number of ports must be even
    ");
    
    	/* Creates a new mempool in memory to hold the mbufs. */
    	// 创建mempool
    	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
    		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
    
    	if (mbuf_pool == NULL)
    		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool
    ");
    
    	/* Initialize all ports. */
    	RTE_ETH_FOREACH_DEV(portid) // 端口初始化 与basicfw的一样
    		if (port_init(portid, mbuf_pool) != 0)
    			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "
    ",
    					portid);
    
    	if (rte_lcore_count() > 1) // 只需要一个逻辑核心
    		printf("
    WARNING: Too many lcores enabled. Only 1 used.
    ");
    
    	socket_id = rte_eth_dev_socket_id(0); // 返回 0 号网口所在的NUMA socket id号
    
    	/* Memory allocation */
    	// 为分流器 cls_app 分配内存
    	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));// 返回大于或等于宏定义参数的第一个缓存对齐值
    	cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); // DPDK的malloc:从调用该函数的核上的同一个NUMA socket的大页面区域分配堆内存。
    															// zmalloc 就是清零 与 calloc 相似
    	/* rte_zmalloc 参数三个:
    		1. 指示这块区域分配给怎样的object类型。用于debug用途。可以写NULL
    		2. size (in bytes) to be allocated,这里分配一个cache缓存行的字节。
    		3. align
    			if 0, 会返回一个适合任何类型变量的指针,就像 malloc
    			否则,返回一个内存区域是 align 的对齐倍数,显然最小对齐是高速缓存行大小,宏:RTE_CACHE_LINE_SIZE
    	*/
    	if (cls_app == NULL) // 分配内存失败
    		rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory
    ");
    
    	// classifier 的参数 有两个: name 和 socket id
    	// 需要在调用 create() API 之前由应用程序初始化
    	cls_params.name = "flow_classifier";
    	cls_params.socket_id = socket_id;
    
    	// 调用 rte_flow_classifier_create() 函数来创建rte_flow_classifier对象。
    	// 参数是 rte_flow_classifier_params 结构体指针
    	cls_app->cls = rte_flow_classifier_create(&cls_params);
    	if (cls_app->cls == NULL) { // 创建失败
    		rte_free(cls_app);
    		rte_exit(EXIT_FAILURE, "Cannot create classifier
    ");
    	}
    
    	/* initialise ACL table params */
    	// 填写 ACL 的初始化参数
    	// 四个字段:
    	table_acl_params.name = "table_acl_ipv4_5tuple"; // ACL的名字
    	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; // 表中最大ACL规则数量:91 
    	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); // 一条ACL规则中的有多少个字段(fields)
    	//宏定义如下:#define RTE_DIM(a) (sizeof (a) / sizeof ((a)[0])) 直观看就是返回数组的长度。
    
    	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 
    	//  ACL rule 的详细内容 specification
    	//  ACL 规则的字段也必须由应用程序初始化。
    
    	/* initialise table create params */
    	// 填写 表 的创建参数
    	// 三个字段:
    	cls_table_params.ops = &rte_table_acl_ops; //表操作(特定于每个表类型),(todo:这里不清楚具体是怎么操作的
    	cls_table_params.arg_create = &table_acl_params; // 传递给表的用于创建的参数 这里是ACL的初始化参数结构体的指针
    	cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; // table's type,是一个 enum 
    
    	// rte_flow_classify_table_create() 向classifier对象添加一个表。
    	// 参数两个:1. 流分类器的指针 2. 表创建的参数
    	ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
    	if (ret) { // 返回值:成功时返回 0
    		rte_flow_classifier_free(cls_app->cls);
    		rte_free(cls_app);
    		rte_exit(EXIT_FAILURE, "Failed to create classifier table
    ");
    	}
    
    	/* read file of IPv4 5 tuple rules and initialize parameters
    	 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
    	 * API's.
    	 */
    	// 然后它读取ipv4_rules_file.txt文件,验证流规则是否合法,然后初始化rte_flow_classify_table_entry_add() API 的参数,使用此API将规则添加到ACL表。
    	if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
    		rte_flow_classifier_free(cls_app->cls);
    		rte_free(cls_app);
    		rte_exit(EXIT_FAILURE, "Failed to add rules
    ");
    	}
    
    	/* Call lcore_main on the master core only. */ // todo
    	lcore_main(cls_app);
    
    	return 0;
    }
    
    

    基本看完了,但开头有很多结构体和宏定义,没有办法在 API doc 中找到确切的页面。第一个是因为 DPDK src code 中对那些数据结构有经常的改动,文档上的改动没有跟上。还有就是有用到一些 Intel 各种宏定义,并不是在 DPDK 的 API doc 中有体现。

    flow_classify 这个程序做的事情分为如下几步骤:

    1. EAL初始化、端口初始化、分配内存等,与basicfw是一样的。
    2. 创建 flow_classifer对象。这一个过程在代码中体现好几个阶段:为classifier分配内存、填写 ACL 的初始化参数、填写 table 的初始化参数、创建 classifer 对象。
    3. 读取 ipv4_rules_file.txt 这个文件,文件中一行是一个规则,一行的内容是一个ipv4的五元组。如果符合输入的合法性验证要求,就把里面的内容,提成特定的数据结构,插入到 classifer 里。2、3两步过程中封装了多层,还涉及非常多的数据结构和API。不容易搞懂。(其实也不需要完全搞懂,我后面有说,继续往下看)
    4. 添加完规则后进入lcore_main主线程,死循环收包(参照basicfw)。每次收上来的一堆包,就对 classifier 里的每条规则进行都 query,用到DPDK的API。如果其中有符合规则的packet(也就是query rule 匹配),就会在对应 rule 的 counter 加 1 并显示 counter 的数字(匹配成功次数),失败的话就显示“没有匹配到这条规则”的提示语句。然后不论匹配是否成功,都把这批包从另一个端口转发了。

    我们可以看看 ipv4_rules_file.txt 这个文件的内容:

    #src_ip/masklen dst_ip/masklen src_port : mask dst_port : mask proto/mask priority
    #
    2.2.2.3/24 2.2.2.7/24 32 : 0xffff 33 : 0xffff 17/0xff 0
    9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 17/0xff 1
    9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 6/0xff 2
    9.9.8.3/24 9.9.8.7/24 32 : 0xffff 33 : 0xffff 6/0xff 3
    6.7.8.9/24 2.3.4.5/24 32 : 0x0000 33 : 0x0000 132/0xff 4
    6.7.8.9/32 192.168.0.36/32 10 : 0xffff 11 : 0xffff 6/0xfe 5
    6.7.8.9/24 192.168.0.36/24 10 : 0xffff 11 : 0xffff 6/0xfe 6
    6.7.8.9/16 192.168.0.36/16 10 : 0xffff 11 : 0xffff 6/0xfe 7
    6.7.8.9/8 192.168.0.36/8 10 : 0xffff 11 : 0xffff 6/0xfe 8
    

    可以看到,DPDK 在 classify flow 中对 flow 的定义是根据 IPv4 的五元组 + 优先级来的,优先级就是如果有一个包同时满足了多条规则,则匹配的是优先级最高的那一条。

    综上所述,这个flow_classify 的程序的功能就是首先,在文件ipv4_rules_file.txt 中预设一些五元组 + 优先级的 rules,然后运行这个程序。在网口收包时,如果收到了满足某条 rule 的流,则会提示并在相对应的 rule 上计数。由于代码太复杂,所以我们不需要对代码进行修改或自行编程,只需修改ipv4_rules_file.txt 这个文件的内容后,运行自带的程序即可。DPDK还有一个 sample 叫做flow_filtering,我猜想大部分程序内容应该会和flow_classify是相似的,区别会体现在lcore_main主线程中,flow_filtering会把不满足流规则的包丢弃。

    运行情况

    root@ubuntu:/home/chang/dpdk/examples/flow_classify/build# ./flow_classify -c 1 -n 4 -- --rule_ipv4="../ipv4_rules_file.txt"
    EAL: Detected 8 lcore(s)
    EAL: No free hugepages reported in hugepages-1048576kB
    EAL: Multi-process socket /var/run/.rte_unix
    EAL: Probing VFIO support...
    EAL: PCI device 0000:02:01.0 on NUMA socket -1
    EAL:   Invalid NUMA socket, default to 0
    EAL:   probe driver: 8086:100f net_e1000_em
    EAL: PCI device 0000:02:02.0 on NUMA socket -1
    EAL:   Invalid NUMA socket, default to 0
    EAL:   probe driver: 8086:100f net_e1000_em
    EAL: PCI device 0000:02:03.0 on NUMA socket -1
    EAL:   Invalid NUMA socket, default to 0
    EAL:   probe driver: 8086:100f net_e1000_em
    EAL: PCI device 0000:02:04.0 on NUMA socket -1
    EAL:   Invalid NUMA socket, default to 0
    EAL:   probe driver: 8086:100f net_e1000_em
    Port 0 MAC: 00 0c 29 f7 4d 25
    Port 1 MAC: 00 0c 29 f7 4d 2f
    table_entry_delete succeeded [7]
    
    
    Core 0 forwarding packets. [Ctrl+C to quit]
    
    rule [0] query failed ret [-22]
    
    rule [1] query failed ret [-22]
    
    rule [2] query failed ret [-22]
    
    rule [3] query failed ret [-22]
    
    rule [4] query failed ret [-22]
    
    rule [5] query failed ret [-22]
    
    rule [6] query failed ret [-22]
    
    rule [7] query failed ret [-22]
    
    rule [8] query failed ret [-22]
    
    rule [0] query failed ret [-22]
    
    rule [1] query failed ret [-22]
    
    rule [2] query failed ret [-22]
    
    rule [3] query failed ret [-22]
    
    rule [4] query failed ret [-22]
    
    rule [5] query failed ret [-22]
    
    rule [6] query failed ret [-22]
    
    rule [7] query failed ret [-22]
    
    rule [8] query failed ret [-22]
    
    rule [0] query failed ret [-22]
    
    rule [1] query failed ret [-22]
    
    rule [2] query failed ret [-22]
    
    rule [3] query failed ret [-22]
    
    rule [4] query failed ret [-22]
    
    rule [5] query failed ret [-22]
    
    rule [6] query failed ret [-22]
    
    rule [7] query failed ret [-22]
    
    rule [8] query failed ret [-22]
    
    

    我没有改动原来自带的规则文件,因此不会有匹配成功,提示的都是匹配失败。下一步的思路可以是熟悉pktgen等发包工具的使用,发出特定五元组的包,并在规则文件中修改,使其匹配。

    reference

  • 相关阅读:
    JVM调优
    【转】中文分词之HMM模型详解
    xwiki enterprise 8.4.5使用https步骤
    dubbo和shiro的整合,在服务端做权限验证
    电商课题:分布式锁
    Export large data from Gridview and Datareader to an Excel file using C#
    sap学习笔记
    git拉取远程分支并创建本地分支
    Echarts 解决饼图文字过长重叠的问题
    用localStorage坚持Vuex状态----vuex-persistedstate
  • 原文地址:https://www.cnblogs.com/ZCplayground/p/9330696.html
Copyright © 2020-2023  润新知