Description
一个长度为 (L) 的环上有 (n) 个黑点和 (n) 个白点 , 你需要把黑点和白点配对 , 使得配对点的最大距离最小 , 最小距离定义为两点在环上的两条路径的最小值.
题面
Solution
二分一个答案 , 把距离小于答案的连边 , 现在要判断是否存在完美匹配.
运用 (Hall) 定理 , 这题对于所有区间满足 (Hall) 定理 , 就满足 (Hall) 定理.
对于一段白点区间 ([l,r]) 我们设他们能匹配到的黑点对应的区间是 ([L,R]) , (r-l>R-L) 就不满足条件.
问题在于本题是个环 , 所以破环成链 , 如何考虑最短路径 ? 只需要把链倍长两次 , 然后从 (n+1) 开始考虑 , 这样的话同一个黑点既可以在左边也可以在右边被匹配到了.
#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
typedef long long ll;
const int N=8e5+10;
int n,m,p[N];ll a[N],b[N],q[N],L;
inline bool check(int mid){
int l=0,r=n,L=1,R=0;
for(int i=1;i<=n*3;i++){
while(l<m && b[l+1]<a[i]-mid)l++;
while(r<m && b[r+1]<=a[i]+mid)r++;
while(L<=R && i-l-1<=q[R])R--;
q[++R]=i-l-1,p[R]=i;
while(L<=R && i-p[L]>=n)L++;
if(L<=R && i-r>q[L])return false;
}
return true;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>L;m=n*4;
for(int i=1;i<=n;i++)gi(a[i]);
for(int i=1;i<=n;i++)gi(b[i]);
sort(a+1,a+n+1),sort(b+1,b+n+1);
for(int i=1;i<=n;i++)
for(int j=1;j<=3;j++)a[i+j*n]=a[i]+L*j,b[i+j*n]=b[i]+L*j;
int l=0,r=L,mid,ans=0;
while(l<=r){
mid=(l+r)>>1;
if(check(mid))ans=mid,r=mid-1;
else l=mid+1;
}
cout<<ans;
return 0;
}