Description
Given a string S. K-string is the sub-string of S and it appear in the S at least K times.It means there are at least K different pairs (i,j) so that Si,Si+1... Sj equal to this K-string. Given m operator or query:1.add a letter to the end of S; 2.query how many different K-string currently.For each query ,count the number of different K-string currently.
solution
还是老套路:利用父节点为最大子集,直接累加儿子出现次数到父亲上面,每一次新加入节点就直接从当前节点跳father,并更新father,如果出现了K次就统计答案,统计方式和上次一样,当前节点所能接受的并且和父亲节点不重合的有 (len[p]-len[fa[p]]) 个,注意为了避免重复统计,如果当前节点到了 (K),那么父节点就一定都已经达到了 (K),所以不需要继续跳了
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=400005;
int ch[N][27],fa[N],n,m,K,len[N],cnt=1,cur=1,p,size[N];
char s[5],S[N];long long ans=0;
void build(int c,int id){
p=cur;cur=++cnt;len[cur]=id;
for(;p && !ch[p][c];p=fa[p])ch[p][c]=cur;
if(!p)fa[cur]=1;
else{
int q=ch[p][c];
if(len[p]+1==len[q])fa[cur]=q;
else{
int nt=++cnt;len[nt]=len[p]+1;
memcpy(ch[nt],ch[q],sizeof(ch[q]));
fa[nt]=fa[q];fa[q]=fa[cur]=nt;
for(;ch[p][c]==q;p=fa[p])ch[p][c]=nt;
size[nt]=size[q];
}
}
}
void upd(){
p=cur;
while(p>1){
if(size[p]>=K)return ;
size[p]++;
if(size[p]>=K){ans+=len[p]-len[fa[p]];return ;}
p=fa[p];
}
}
void Clear(){
for(RG int i=0;i<N;i++){
fa[i]=size[i]=len[i]=0;
for(RG int j=0;j<=26;j++)ch[i][j]=0;
}
cur=1;cnt=1;ans=0;
}
void work()
{
scanf("%s",S+1);
for(int i=1;i<=n;i++){
build(S[i]-'a',i);
upd();
}
int flag;
for(int i=1;i<=m;i++){
scanf("%d",&flag);
if(flag==2)printf("%lld
",ans);
else{
scanf("%s",s);
build(s[0]-'a',++n);upd();
}
}
}
int main()
{
while(~scanf("%d%d%d",&n,&m,&K))work(),Clear();
return 0;
}