• POJ 1228 Grandpa's Estate 凸包 唯一性


    LINK

    题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变。

    思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线点的包括也较为容易,而极角序对始边和终边的共线问题较为麻烦。

    /** @Date    : 2017-07-17 21:08:41
      * @FileName: POJ 1228 稳定凸包.cpp
      * @Platform: Windows
      * @Author  : Lweleth (SoungEarlf@gmail.com)
      * @Link    : https://github.com/
      * @Version : $Id$
      */
    #include <stdio.h>
    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <utility>
    #include <vector>
    #include <map>
    #include <set>
    #include <string>
    #include <stack>
    #include <queue>
    #include <math.h>
    //#include <bits/stdc++.h>
    #define LL long long
    #define PII pair<int ,int>
    #define MP(x, y) make_pair((x),(y))
    #define fi first
    #define se second
    #define PB(x) push_back((x))
    #define MMG(x) memset((x), -1,sizeof(x))
    #define MMF(x) memset((x),0,sizeof(x))
    #define MMI(x) memset((x), INF, sizeof(x))
    using namespace std;
    
    const int INF = 0x3f3f3f3f;
    const int N = 1e5+20;
    const double eps = 1e-8;
    
    
    struct point
    {
    	double x, y;
    	point(){}
    	point(double _x, double _y){x = _x, y = _y;}
    	point operator -(const point &b) const
    	{
    		return point(x - b.x, y - b.y);
    	}
    	double operator *(const point &b) const 
    	{
    		return x * b.x + y * b.y;
    	}
    	double operator ^(const point &b) const
    	{
    		return x * b.y - y * b.x;
    	}
    };
    
    double xmult(point p1, point p2, point p0)  
    {  
        return (p1 - p0) ^ (p2 - p0);  
    }  
    
    double distc(point a, point b)
    {
    	return sqrt((double)((b - a) * (b - a)));
    }
    int sign(double x)
    {
    	if(fabs(x) < eps)
    		return 0;
    	if(x < 0)
    		return -1;
    	else 
    		return 1;
    }
    
    ////////
    int n;
    point stk[N];
    point p[N];
    int cmp(point a, point b)//以p[0]基准 极角序排序
    {
    	int t = xmult(a, b, p[0]);
    	if(t > 0)
    		return 1;
    	if(t == 0)
    		return distc(a, p[0]) < distc(b, p[0]);
    	if(t < 0)
    		return 0;
    }
    int cmpC(point a, point b)//水平序排序
    {
    	return sign(a.x - b.x) < 0 || (sign(a.x - b.x) == 0 && sign(a.y - b.y) < 0);
    }
    int GrahamA()
    {
    	double mix, miy;
    	mix = miy = 1e10;
    	int pos = 0;
    	for(int i = 0; i < n; i++)
    	{
    		if(p[i].y < miy || (p[i].y == miy && p[i].x < mix))
    		{
    			mix = p[i].x, miy = p[i].y;
    			pos = i;
    		}
    	}
    	swap(p[0], p[pos]);
    	sort(p + 1, p + n, cmp);
    	int top = 0;
    	stk[0] = p[0];
    	stk[1] = p[1];
    	for(int i = 0; i < n; i++)
    	{
    		while(top >= 2 && sign(xmult(stk[top - 2], stk[top - 1], p[i])) < 0)
    			top--;
    		stk[top++] = p[i];
    	}
    	//stk[++top] = p[0];
    	return top;
    }
    
    int Graham()//水平序
    {
    	sort(p, p + n, cmpC);
    	int top = 0;
    	for(int i = 0; i < n; i++)
    	{
    		while(top >= 2 && sign(xmult(stk[top - 2], stk[top - 1], p[i])) < 0)
    			top--;
    		stk[top++] = p[i];
    	}
    	int tmp = top;
    	for(int i = n - 2; i >= 0; i--)
    	{
    		while(top > tmp && sign(xmult(stk[top - 2],stk[top - 1] ,p[i] )) < 0)
    			top--;
    		stk[top++] = p[i];
    	}
    	if(n > 1)
    		top--;
    	return top;
    }
    
    
    int check(int m)
    {
    	//cout << m << endl;
    	for(int i = 1; i < m; i++)
    	{
    		//cout << i << endl;
    		//cout << "x:" << stk[i].x << "y:" << stk[i].y << endl;
    		//cout << xmult(stk[i - 1], stk[(i + 1)%(m)], stk[i]) << "~" << xmult(stk[i], stk[(i + 2)%(m)], stk[(i + 1)%(m)]) << endl;
    		
    		if(sign(xmult(stk[i - 1], stk[(i + 1)%(m)], stk[i])) != 0 
    			&& sign(xmult(stk[i], stk[(i + 2)%(m)], stk[(i + 1)%(m)])) != 0)
    			return 0;
    	}
    	return 1;
    }
    /////////
    int main()
    {
    	int T;
    	cin >> T;
    	while(T--)
    	{
    		scanf("%d", &n);
    		for(int i = 0; i < n; i++)
    		{
    			double x, y;
    			scanf("%lf%lf", &x, &y);
    			p[i] = point(x, y);
    		}
    		if(n < 6)
    		{
    			printf("NO
    ");
    			continue;
    		}
    		int cnt = Graham();
    		// for(int i = 0 ; i < cnt; i++)
    		// 	cout << stk[i].x << "%" << stk[i].y << endl;
    		printf("%s
    ", check(cnt)?"YES":"NO");
    
    	}
        return 0;
    }
    
  • 相关阅读:
    pch文件的创建
    常用的Xcode插件下载地址
    内存管理
    学习笔记-static的作用
    IOS 之label的自适应
    OC中的循环引用
    理解事务的4种隔离级别
    Solrcloud集群搭建
    常见前端浏览器兼容问题及解决方案
    Java内存溢出详解及配置
  • 原文地址:https://www.cnblogs.com/Yumesenya/p/7212483.html
Copyright © 2020-2023  润新知