• [UOJ310] 黎明前的巧克力


    Sol

    某比赛搬了这题。

    首先选择两个不交非空子集且异或和为0的方案数,等价于选择一个异或和为0的集合,并把它分成两部分的方案数。
    这显然可以DP来算,设 (f[i][j]) 表示前(i)个数异或和为(j)的方案数,那么转移就是 (f[i][j]=f[i-1][j]+2cdot f[i-1][j; ext{xor};a[i]])

    如果设 (b_i[0]=1,b_i[a[i]]=2,b_i[j]=0),那么这个转移就是求(f)(b_i; ext{xor})卷积的过程,可以用FWT优化,但是复杂度似乎更爆炸了。

    如果我们可以把每个(b) FWT之后的结果都求出来并乘在一起,最后在对应位置乘到(f)上,再把(f) IFWT回去不就好了嘛!

    如果把(b_i)数组FWT之后的结果打印出来,会发现所有位置不是(3)就是(-1),大概是因为这个(2)对每一项的贡献要么是(2)要么是(-2)

    我们可以先把(b_i)数组整个加起来,对它做一次FWT。

    因为FWT的和等于和的FWT。对于FWT之后的第(i)(s),设这位有(x)个数为(-1),那么就有(n-x)个数为 (3),且(3(n-x)-x=s),解得 (x=large frac{3n-s}4) 。那么FWT之后这一项的值就是 ((-1)^x3^{n-x})

    然后乘到(f)上再IFWT回去就行了。

    (uoj被卡了我不知道这代码能过否
    (mp数组开小了,已经改过来了

    Code

    #include<set>
    #include<map>
    #include<queue>
    #include<cmath>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    typedef double db;
    typedef long long ll;
    const int N=1048578;
    const int maxn=1048576;
    const int mod=998244353;
    const int inv2=(mod+1)/2;
    
    int n,f[N],b[N],po[N];
    
    void Mul(int &x,int y){x=1ll*x*y%mod;}
    int mul(int x,int y){return 1ll*x*y%mod;}
    void Dec(int &x,int y){x=x-y<0?x+mod-y:x-y;}
    int dec(int x,int y){return x-y<0?x+mod-y:x-y;}
    void Inc(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
    int inc(int x,int y){return x+y>=mod?x+y-mod:x+y;}
    
    int ksm(int a,int b=mod-2,int ans=1){
        while(b){
            if(b&1) ans=mul(ans,a);
            a=mul(a,a); b>>=1; 
        } return ans;
    }
    
    void fwt(int *f,int opt){
        for(int mid=1;mid<maxn;mid<<=1){
            for(int R=mid<<1,j=0;j<maxn;j+=R){
                for(int k=0;k<mid;k++){
                    int x=f[j+k],y=f[j+k+mid];
                    f[j+k]=inc(x,y),f[j+k+mid]=dec(x,y);
                    if(opt<1) Mul(f[j+k],inv2),Mul(f[j+k+mid],inv2);
                }
            }
        }
    }
    
    signed main(){
        scanf("%d",&n); f[0]=1; fwt(f,1);
        po[0]=1; for(int i=1;i<=n;i++) po[i]=mul(po[i-1],3);
        for(int x,i=1;i<=n;i++)
            scanf("%d",&x),b[0]++,b[x]+=2;
        fwt(b,1); int ni=ksm(4);
        for(int i=0;i<maxn;i++){
            int x=mul(dec(n*3,b[i]),ni);
            Mul(f[i],x&1?mod-po[n-x]:po[n-x]);
        } fwt(f,-1); printf("%d
    ",dec(f[0],1));
    }
    
  • 相关阅读:
    MVC已经是现代Web开发中的一个很重要的部分,下面介绍一下Spring MVC的一些使用心得。
    @MySQL的存储引擎
    SpringMVC关于json、xml自动转换的原理研究
    json-lib 的maven dependency
    58到家数据库30条军规解读
    @Linux下Redis的安装
    Redis的5个常见使用场景
    Json对象和Json字符串的区别
    @查看MySQL版本的方法
    @java.lang.NoSuchMethodError
  • 原文地址:https://www.cnblogs.com/YoungNeal/p/10541629.html
Copyright © 2020-2023  润新知