• RPN(region proposal network)之理解


    在faster-r-cnn 中,因为引入rpn层,使得算法速度变快了不少,其实rpn主要作用预测的是

    “相对的平移,缩放尺度”,rpn提取出的proposals通常要和anchor box进行拟合回归,就像

    卡尔曼滤波一样,最终结果是基于观测量加上一个预测量。这里将的不错,公式和代码也

    切合。

    下面部分来源:http://www.cnblogs.com/dudumiaomiao/p/6560841.html
    主要步骤,

    回归/微调:

    回归/微调的对象是什么? 

    (4)   Bounding-box regression(边框回归) 
    那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是: 
     

    和知乎   https://www.zhihu.com/question/42205480     的回答:

    这里输出的并不是一个boundingbox的左上右下坐标,而是一个修改量(boundingbox regression)。在r-cnn的supplementary material中,给出了下面几个公式
    这里面的P就是的anchor(高、宽、中心),而里面的d_{x} d_{y}d_{w}d_{h}是rpn_bbox层输出的四个值,G就是修改之后的高、宽、中心。


    作者:刘缘
    链接:https://www.zhihu.com/question/42205480/answer/128259995
    来源:知乎
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
  • 相关阅读:
    TCP和UDP区别
    session和cookie的区别
    2019 腾讯正式批笔试题题解
    modCount干嘛的
    分布式系统唯一ID生成方案汇总
    分布式数据库名词
    快手第一题
    南柯一梦
    349. 两个数组的交集
    synchronized锁优化
  • 原文地址:https://www.cnblogs.com/YouXiangLiThon/p/7685576.html
Copyright © 2020-2023  润新知