http://blog.csdn.net/zy1034092330/article/details/62044941
2.1 多通道图像卷积基础知识介绍
缩进在介绍RPN前,还要多解释几句基础知识,已经懂的看官老爷跳过就好。
- 对于单通道图像+单卷积核做卷积,第一章中的图3已经展示了;
- 对于多通道图像+多卷积核做卷积,计算方式如下:
图5 多通道+多卷积核做卷积示意图(摘自Theano教程)
缩进如图5,输入图像layer m-1有4个通道,同时有2个卷积核w1和w2。对于卷积核w1,先在输入图像4个通道分别作卷积,再将4个通道结果加起来得到w1的卷积输出;卷积核w2类似。所以对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量!
缩进对多通道图像做1x1卷积,其实就是将输入图像于每个通道乘以卷积系数后加在一起,即相当于把原图像中本来各个独立的通道“联通”在了一起。